Volumetric soil profile modeling using geo-statistics and GIS: case study Kuwait Sabkha

  • M. A. Elfadil
  • A. F. Al-Yaqout
  • A. M. Hefny
Original Paper


Geo-statistics techniques showed high applicability in fields related to geotechnical engineering like mining and petroleum engineering. Hence, this paper introduces direct application of Geo-statistics in Geotechnical engineering which is 3D soil profiling. It introduces Geo-statistics as a concept and shows the practical implementation of these techniques on modeling soil profile using CPT sample data through the integration between GIS and a specialized 3D Geo-statistical modeling software called Sgems (Stanford Geo-statistical modeling software). Using 30 CPT logs in Sabkha soil from the data of Soil Works for a costal Housing Project located approximately 25 km west of Kuwait city, and a semi-automated workflow, the 3D model was produced on Sgems and converted to GIS. The ESRI-ArcGIS software was used in querying 3D soil profile and in producing 3D section in-spite of its limitation in 3D Voxel representation.


Geo-statistics GIS ArcGIS Sgems Variogram Stationarity Autocorrelation Anisotropy Modeling Soil profile CPT 


  1. Al-Otaibi F (2006) An assessment of the possibility of stabilizing Sabkha soils using oil lake residue—reuse of waste materials, Phd. Geoenvironmental Research Centre, Cardiff School of Engineering, Cardiff University, CardiffGoogle Scholar
  2. Barth H, Böer B (2002) Sabkha ecosystems volume I: the Arabian Peninsula and adjacent countries. Springer, Berlin ISBN 978-1-4020-0504-6Google Scholar
  3. Bohling G (2005) Introduction to geostatistics and variogram analysis. Kansas Geological Survey, C&PE, Lawrence 940Google Scholar
  4. Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, Oxford 333 ppGoogle Scholar
  5. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York 483 ppGoogle Scholar
  6. Gunaratna N, Liu Y, Park J (2011) Spatial Autocorrelation, Recuperado el J, vol 2Google Scholar
  7. Hammah R, Curran J (2006) Geostatistics in geotechnical engineering: Fad or empowering? Proceedings of the Geocongress, ASCE, USAGoogle Scholar
  8. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, Oxford 561 pagesGoogle Scholar
  9. Jerosch K, Schlüter M, Roland P (2006) Spatial analysis of marine categorical information using indicator kriging applied to georeferenced video mosaics of the deep-sea Håkon Mosby Mud Volcano. Ecol Inf 1:391–406CrossRefGoogle Scholar
  10. Johnston K, Ver Hoef J, Krivoruchko K, Lucas N (2003) ArcGIS® 9 using ArcGIS® Geostatistical analyst. ESRI, RedlandsGoogle Scholar
  11. Journel AG (1983) Nonparametric estimation of spatial distributions. Math Geol 15(3):445–468CrossRefGoogle Scholar
  12. Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 52(6):119–139Google Scholar
  13. Li J, Heap A (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, CanberraGoogle Scholar
  14. Remy N (2004) Geostatistical earth modeling software: user’s manualGoogle Scholar
  15. Remy N, Boucher A, Wu J (2008) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, CambridgeGoogle Scholar
  16. Zhang Y (2011) Introduction to geostatistics | course notes. Dept. of Geology & Geophysics, University of Wyoming, LaramieGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • M. A. Elfadil
    • 1
  • A. F. Al-Yaqout
    • 2
  • A. M. Hefny
    • 3
  1. 1.Gulf ConsultKuwaitKuwait
  2. 2.Civil Engineering DepartmentKuwait UniversityKuwaitKuwait
  3. 3.Department of Civil & Environmental Engineering DepartmentUnited Arab Emirates UniversityAl AinUnited Arab Emirates

Personalised recommendations