Advertisement

Modeling of flood generation in semi-arid catchment using a spatially distributed model: case of study Wadi Mekerra catchment (Northwest Algeria)

  • Noureddine Maref
  • Abdelali Seddini
Original Paper
  • 94 Downloads

Abstract

This paper aims to apply the MERCEDES distributed hydrological model with an event-based mode to simulate flood generation in the Wadi Mekerra basin situated northwest of Algeria. This catchment is characterized by a semi-arid climate, convective thunderstorms, and ephemeral flow. The input data are mainly the daily rainfall-runoff and numerical maps such as slope, flow direction, and land use. The comparison between calculated and measured runoff revealed that the MERCEDES performance to simulate flood generation in Wadi Mekerra basin is encouraging and satisfying which is justified by the Nash–Sutcliffe and observations standard deviation ratio criteria. However, the proposed model tends to underestimate peak runoff due to convective rainfall that may be much localized in space. Furthermore, the sensitivity analysis shows that the hydrological response in the Wadi Mekerra catchment depends strongly on the potential maximum retention parameter which is related to the land use type and varies significantly between seasons according to the vegetation cover dynamics, rainfall intensity, and drought.

Keywords

MERCEDES model Rainfall-runoff Wadi Mekerra Flood generation Loss and routing methods Land use 

Abbreviations

A (m2)

Cell area

C(t)

Runoff coefficient

CN

Curve number

ds (day−1)

Drainage coefficient

f(t)

Infiltration

i(t)

Intensity

Ia (mm)

Initial loss

K0

Empirical constant of proportionality

P(t) (mm)

The cumulative rainfall

RSR

Observations standard deviation ratio

R(t)

Runoff

S(t) (mm)

Soil reservoir capacity (the potential maximum retention)

Tm

Propagation time

vid(t)

Soil drainage

ω

Fraction of the subsurface water

Lm (m)

Flow path length

V0 (m s−1)

Transfer speed

ATHYS

Atelier Hydrologique Spatialisé

DEM

Digital elevation model

MERCEDES

Maillage Elémentaire Régulier Carré pour l’Etude Des Ecoulements Superficiels

NSE

Nash–Sutcliffe efficiency criterion

RSR

Observations standard deviation ratio criteria

SABY

Sidi Ali Ben Youb

SBA

Sidi Bel Abbes

SCS

Soil Conservation Service

SRTM

Shuttle Radar Topography Mission

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their beneficial comments which really contributed to improving the paper. They would also like to thank the editors for their support during the review process. Also, we thank the National Agency of Hydraulic Resources (ANRH) in Oran City and the directorate of Water Resources in Sidi Bel Abbes City for providing the data. The authors would like to thank the Research Institute for Development (IRD) which is the developer of ATHYS software.

References

  1. Achite M, Ouillon S (2007) Suspended sediment transport in a semiarid water-shed, Wadi Abd, Algeria (1973–1995). J Hydrol 343:187–202CrossRefGoogle Scholar
  2. Abdi I, Meddi M (2015) Modélisation pluie-débit distribuée dans deux bassins versants de l’Est de l’Algérie. Larhyss J 23:7–22Google Scholar
  3. Abushandi EH (2011) Rainfall-runoff modeling in arid areas. Dissertation, University of Bergakademie FreibergGoogle Scholar
  4. Andreassian V, Lerat J, Loumagne C, Mathevet T, Michel C, Oudin L, Perrin C (2007) What is really undermining hydrologic science today? Hydrol Process 21:2819–2822CrossRefGoogle Scholar
  5. Arnold J, Srinivasan R, Muttiah R, Williams J (1998) Large area hydrologic modeling and assessment - part 1 : Model development. JAWRA 34:73–89Google Scholar
  6. Aroua N, Berezowska-Azzag E (2009) Contribution à l’étude de la vulnérabilité urbaine au risque d’inondation dans un contexte de changement climatique. Cas de la valle d’oued El Harrach à Alger. Fifth Urban Research SymposiumGoogle Scholar
  7. Ardoin BS (2004). Variabilité hydroclimatique et impacts sur les ressources en eau de grands bassins hydrographiques en zone soudano-sahélienne. Dissertation, University of Montpellier IIGoogle Scholar
  8. Ayenew Y (2008) Rainfall-runoff modelling for sustainable water resources management: the case of Gumara Watershed, Ethiopia. University School of Graduate Studies, Addis AbabaGoogle Scholar
  9. Bahat Y, Grodek T, Lekach J, Morin E (2009) Rainfall-runoff modeling in a small hyper-arid catchment. J Hydrol 373:204–217CrossRefGoogle Scholar
  10. Ballais JL, Chave S, Dupont N, Masson E, Penven MJ (2011) La méthode hydrogéomorphologique de détermination des zones inondables. Physio Géo 5:1–168Google Scholar
  11. Benkaci AT, Dechemi N (2004) Modélisation pluie-débit journalière par des modèles conceptuels et “boîte noire”; test d’un modèle neuroflou. Hydrolog Sci J 49:919–930Google Scholar
  12. Bentura PL, Michel C (1997) Flood routing in a wide channel with a quadratic lag-and-route method. Hydrolog Sci J 42:169–189CrossRefGoogle Scholar
  13. Beschta RL, Pyles MR, Skaugset AE, Surfleet CG (2000) Peak flow responses to forest practices in the western cascades of Oregon, USA. J Hydrol 233:102–120CrossRefGoogle Scholar
  14. Bessière H (2008). Assimilation de données variationnelle pour la modélisation hydrologique distribuée des crues à cinétique rapide. Dissertation, National Polytechnic Institute of ToulouseGoogle Scholar
  15. Beven KJ (2001) Rainfall runoff modeling. Blackwell, LondonGoogle Scholar
  16. Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69CrossRefGoogle Scholar
  17. Borsali AH, Bekki A, Hasnaoui O (2005) Aspect hydrologique des catastrophes naturelles « Inondation, glissement de terrain » étude d’un cas : Oued Mekerra (Sidi Bel Abbès). XXIII University Meetings of Civil Engineering - AUGC, 26–27 May 2005, Grenoble France: 1–8Google Scholar
  18. Bouasria S, Khalladi M, Khaldi A (2010) Ralentissement Dynamique des Inondations au niveau d’un bassin Versant de l’Ouest Algérien: cas de l’Oued Mekerra (Sidi Bel Abbes). Eur J Scientif Res 43:172–182Google Scholar
  19. Boulay E (2011) Etude et modélisation des phénomènes karstiques du bassin versant du Rognon. Dissertation, University of Pierre and Marie CurieGoogle Scholar
  20. Bouvier, C. (1994) MERCEDES: principes du modèle et notice d'utilisation (features of the model and tutorial). Rapport interne ORSTOMGoogle Scholar
  21. Bouvier C, Fuentes G, Dominquez R (1994) MERCEDES: un modèle hydrologique d’analyse et de prévision de crues en milieu hétérogène (A hydrological distributed model for flood analysis and forecast for heterogeneous watersheds). Comptes-rendus des 23emes Journées de la SHF Crues et Inondations, NîmesGoogle Scholar
  22. Bouvier C, Delclaux F (1996) ATHYS: a hydrological environment for spatial modelling and coupling with GIS. Proceedings of the Vienna Conference 235:19–27Google Scholar
  23. Bouvier C, Delclaux F, Crespy A (1996) ATHYS: atelier hydrologique spatialisé. IAHS 238:425–435Google Scholar
  24. Bouvier C (2004) De la pluie à l’inondation : Contribution à la compréhension et à la prévision des événements extrêmes sur des petits bassins versants tropicaux et méditerranéens. Dissertation, University of Montpellier IIGoogle Scholar
  25. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw Hill International Editions, New YorkGoogle Scholar
  26. Collier C (2007) Flash flood forecasting: what are the limits of predictability? Q J Roy Meteor Soc 133:3–23CrossRefGoogle Scholar
  27. Cunderlik JM, Simonovic SP (2007) Hydrologic models for inverse climate change impact modeling. In: 18th Canadian Hydro-technical Conference, ManitobaGoogle Scholar
  28. Diskin MH, Lane LJ (1972) A basinwide stochastic model of ephemeral stream runoff in south-eastern Arizona. Hydrol Sci Bull 17:61–76CrossRefGoogle Scholar
  29. Duan Z (2011) Optimum simulation of flood flow rate: comparing combinations of precipitation loss and rainfall excess-runoff transform models. Bechtel Technol J 3(1)1–10Google Scholar
  30. Dubrueil PL (1985) Review of field observations of runoff generation in the tropics. J Hydrol 80:237–264CrossRefGoogle Scholar
  31. Dubrueil PL (1986) Review of relationships between geophysical factors and hydrological characteristics in the tropics. J Hydrol 87:201–222CrossRefGoogle Scholar
  32. Estupina BV (2004) Vers une modélisation hydrologique adaptée à la prévision opérationnelle des crues éclair : Application à de petits bassins versants du sud de la France. Dissertation, Institut National Polytechnique of ToulouseGoogle Scholar
  33. Feldman AD (2000) Hydrologic modeling system HEC-HMS. Technical reference manual. U.S. Army Corps of Engineers. Hydrologic Engineering Center, HEC, DavisGoogle Scholar
  34. Fleming M, Scharffenberg W (2012) Hydrologic modeling system (HEC-HMS): new features for urban hydrology. Hydraulic Engineer, USACE Hydrologic Engineering Center, DavisGoogle Scholar
  35. Fourmigue P, Lavabre J (2005) Prévision de crues avec le monde conceptuel pluie-débit GR3H. Adaptabilité aux incertitudes sur la pluie. Rev Sci Eau 18:87–102Google Scholar
  36. Gerard L (2010) Sensibilité des performances d’un modèle de prévision des crues au critère de calage. Dissertation, National Polytechnic Institute of ToulouseGoogle Scholar
  37. Göttle A (2012) Water management in mountainous regions. Lecture notes, Chair of Water Resources Engineering, Technical University MunichGoogle Scholar
  38. Halwatura D, Najim M (2013) Application of the hec-hms model for runoff simulation in a tropical catchment. Environ Model Softw 46:155–162Google Scholar
  39. Jain MK, Kothyari UC, Ranga Raju KG (2004) A GIS based distributed rainfall–runoff model. J Hydrol 299:107–135CrossRefGoogle Scholar
  40. Jenson SK, Dominique JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54:1593–1600Google Scholar
  41. Jones JA (2000) Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, western Cascades, Oregon. Water Resour Res 36:2621–2642CrossRefGoogle Scholar
  42. Khattati M, Serroukh M, Rafık I, Mesmoudi H, Brirhet H, Bouslihim Y, Hara F (2016) Hydrological modeling of Aguibat Ezziar watershed (Morocco), comparative study of two different hydrological models. J Geogr Inf Syst 8:50–56Google Scholar
  43. Kedem B, Chiu LS, Karni Z (1990) An analysis of the threshold method for measuring area-average rainfall. J Appl Meteorol 29:3–20CrossRefGoogle Scholar
  44. Lange J, Liebundgut C, Schick AP (2000) The importance of single events in arid zone rainfall-runoff modeling. Phys Chem Earth Part B 25:673–677CrossRefGoogle Scholar
  45. Le XK (2008) Variabilité des processus hydrologiques entrant dans le mécanisme de la genèse des crues sur les bassins a cinétique rapide. Dissertation, University of ToulouseGoogle Scholar
  46. Lequien A (2003) Analyse et évaluation des crues extrêmes par modélisation hydrologique spatialisée. Cas du bassin versant du Vidourle. Dissertation, University of Montpellier IIGoogle Scholar
  47. Marchandise A (2007) Caractérisation des processus de formation des crues éclair en région méditerranéenne. Application à la prévision de crues. Dissertation, University of Montpellier IIGoogle Scholar
  48. Matthews WJ (1998) North American streams as systems for ecological study. J N Am Benthol Soc 7:387–409CrossRefGoogle Scholar
  49. Morin J, Benyamini Y (1977) Rainfall infiltration into bare soils. Water Resour Res 13:813–817CrossRefGoogle Scholar
  50. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900CrossRefGoogle Scholar
  51. Moulin L (2007) Prévision des crues rapides avec des modèles hydrologiques globaux. Application aux bassins opérationnels de la Loire supérieure : évaluation des modélisations, prise en compte des incertitudes sur les précipitations moyennes spatiales et utilisation de prévisions météorologiques. Dissertation, National School of Agricultural Engineering, Water and Forestry of ParisGoogle Scholar
  52. Muhammad A, Muhammad W, Jae-Hyun A, Tae-Woong K (2015) Improved runoff estimation using event-based rainfall-runoff models. Water Resour Manag 29:1995–2010CrossRefGoogle Scholar
  53. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I—a discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  54. Oufella O, Touaibia B (2005) Contribution a la cartographie des zones vulnérables aux inondations : application de la méthode « inondabilité » cas de la ville de S.B.A. J Eau Environ 6:56–62Google Scholar
  55. Randrianasolo RA (2009) Evaluation de la qualité des prévisions pour l’alerte aux crues. Dissertation, University Pierre and Marie CurieGoogle Scholar
  56. Rao SS (1978) Engineering optimization: theory and applications. John Wiley & Sons, HobokenGoogle Scholar
  57. Renard KG, Keppel RV (1966) Hydrographs of ephemeral streams in the southwest. J Hydraul Div ASCE 92:33–52Google Scholar
  58. Şen Z (2008) Wadi hydrology. Taylor & Francis Group, LondonGoogle Scholar
  59. Sharon D (1972) The spottiness of rainfall in a desert area. J Hydrol 17:161–175CrossRefGoogle Scholar
  60. Tarboton DG (2003) Rainfall-Runoff processes. A workbook to accompany the Rainfall-Runoff Processes Web module. http://www.engineering.usu.edu/dtarb/rrp.html
  61. Thornes JB (1994) Geomorphology of desert environments, In: Abrahams AD, Parsons AJ (eds)Chapman and Hall, London, pp 303–332Google Scholar
  62. Tramblay Y, Bouvier C, Ayral PA, Marchandise A (2011) Impact of rainfall spatial distribution on rainfall-runoff modeling efficiency and initial soil moisture conditions estimation. Syst Sci Hazards Earth 11:157–170CrossRefGoogle Scholar
  63. U.S. Army Corps of Engineers (2008) Hydrologic modeling system (HEC-HMS) applications guide: version 3.1.0. Institute for Water Resources, Hydrologic Engineering Center, DavisGoogle Scholar
  64. Varado N (2004) Contribution au développement d’une modélisation hydrologique distribuée. Applicationau bassin versant de la Donga, au Bénin. Dissertation, University of GrenobleGoogle Scholar
  65. Zhao F, Zhang L, Chiew FHS, Vaze J, Cheng L (2013) The effect of spatial rainfall variability on water balance modelling for south-eastern Australian catchments. J Hydrol 493:16–29CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Water and Structures in Their Environment Laboratory (Laboratoire Eau et Ouvrages dans Leur Environnement EOLE), Faculty of TechnologyUniversity of Abou Bekr BelkaidTlemcenAlgeria

Personalised recommendations