Skip to main content
Log in

Statistical analysis of the hydro-geochemical evolution of groundwater in the aquifers of the Yarmouk basin, North Jordan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The aim of this study is to determine the main factors affecting the quality of groundwater and its changes through hydro-geochemical analysis and statistical studies. Therefore, hydro-geochemical properties of groundwater are analyzed as Ca2+, Mg2+, Na+, K+, HCO3, Cl, NO3, SO42−, and F as well as their statistical data. Correlation, cluster, and factor analyses were applied on 1322 groundwater samples collected from 148 wells distributed through Yarmouk basin region, North Jordan. Clusters analysis shows two groups of ionic concentrations. Cluster 1 includes 37% of the total samples and classified as brackish and unsuitable water, while 63% follows cluster 2 and is classified as moderately soft and suitable water. Factor analysis tends to increase concentration and spread of Ca2+, Mg2+, Na+, K+, Cl, and SO42− in the groundwater through factor 1 which reflects the high salinity as a result of over-pumping, weathering processes, and salts leaching from the top soil. Cluster 2 shows high concentrations of NO3 in groundwater as a result of the pollution due to agricultural and industrial human activities. Factor scores suggest the main hydro-geochemical zones in the study area, which are distributed in the northern, eastern, and south-eastern parts, which recorded an increase of Cl (high salinity areas). The western region appears to increase in nitrate and chlorine concentrations (high level of salinity), while hardness factor spreads across the northern and southern parts of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abboud IA (2014) Describe and statistical evaluation of hydrochemical data of karst phenomena in Jordan: Al-Dhaher Cave Karst Spring. IOSR J ApplGeol Geophys (IOSR-JAGG) 2(3):23–42. e-ISSN: 2321–0990, p-ISSN: 2321–0982. www.iosrjournals.org www.iosrjournals.org

  • Abboud IA (2018) Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan. Environ Geochem Health. https://doi.org/10.1007/s10653-017-0064-x

  • Abou Zakhem B, Hafez R (2015) Hydrochemical, isotopic and statistical characteristics of groundwater nitrate pollution in Damascus Oasis (Syria). Springer-Verlag Berlin Heidelberg. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4258-1

  • Abu-Jaber N, Kharabsheh A (2008) Ground water origin and movement in the upper Yarmouk Basin, northern Jordan. Environ Geol 54:1355–1365

    Article  Google Scholar 

  • Ag’ca N (2014) Spatial variability of groundwater quality and its suitability for drinking and irrigation in the Amik Plain (South Turkey). Springer-Verlag, Berlin Heidelberg. Environ Earth Sci 72:4115–4130. https://doi.org/10.1007/s12665-014-3305-7

    Article  Google Scholar 

  • Al Kuisi M, Al-Qinna M, Margane A, Aljazzar T (2009) Spatial assessment of salinity and nitrate pollution in Amman Zarqa Basin: a case study. Springer-Verlag. Enviro Earth Sci 59:117–129. https://doi.org/10.1007/s12665-009-0010-z

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Avtar R, Kumar P, Surjan A, Gupta LN, Roychowdhury K (2013) Geochemical processes regulating groundwater chemistry with special reference to nitrate and fluoride enrichment in Chhatarpur area, Madhya Pradesh, India. Springer-Verlag Berlin Heidelberg. Environ Earth Sci 70:1699–1708. https://doi.org/10.1007/s12665-013-2257-7

    Article  Google Scholar 

  • Awawdeh MM, Jaradat RA (2010) Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arab J Geosci 3:273–282. https://doi.org/10.1007/s12517-009-0074-9

    Article  Google Scholar 

  • Babiker IS, Mohamed MAA, Terao H, Kato K, Ohta K (2004) Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environ Internships 29:1009–1017

    Google Scholar 

  • Bajjali W (2008) Evaluation of groundwater in a three-aquifer system in Ramtha area, Jordan: recharge mechanisms, hydraulic relationship and geochemical evolution. Hydrogeol J 16:1193–1205

    Article  Google Scholar 

  • Bajjali W, Al-Hadidi K, Ismail M (2015) Water quality and geochemistry evaluation of groundwater upstream and downstream of the Khirbet Al-Samra wastewater treatment plant/Jordan. Springerlink.com. Appl Water Sci. https://doi.org/10.1007/s13201-014-0263-x

  • Bakari SS, Aagaard P, Vogt RD, Ruden F, Johansen I, Vuai SA (2012) Delineation of groundwater provenance in a coastal aquifer using statistical and isotopic methods, Southeast Tanzania. Springer-Verlag. Environ Earth Sci 66:889–902. https://doi.org/10.1007/s12665-011-1299-y

    Article  Google Scholar 

  • Batayneh A, Zumlot T (2012) Multivariate statistical approach to geochemical methods in water quality factor identification; application to the shallow aquifer system of the Yarmouk Basin of north Jordan. Res J Environ Earth Sci 4(7):756–768

    Google Scholar 

  • Bender F (1968) Geologie von Jordanien. Borntraeger, Berlin 230 pp

    Google Scholar 

  • Calijuri ML, Castro JS, Costa LS, Assemany PP, Alves JEM (2015) Impact of land use/land cover changes on water quality and hydrological behavior of an agricultural subwatershed. Springer-Verlag Berlin Heidelberg. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4550-0

  • Cardona A, Carrillo-Rivera JJ, Huizar-Alvarez R, Graniel-Castro E (2004) Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environ Geol 45:350–366

    Article  Google Scholar 

  • Chae GT, Kim K, Yun ST, Kim KH, Kim SO, Choi BY, Kim HS, Rhee CW (2004) Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility. Chemosphere 55:369–378

    Article  Google Scholar 

  • Chidambaram S, Ramanathan AL, Prasanna MV, Karmegam U, Dheivanayagi V, Ramesh R, Johnsonbabu G, Premchander B, Manikandan S (2010) Study on the hydrogeochemical characteristics in groundwater, post- and pre-tsunami scenario, from Portnova to Pumpuhar, southeast coast of India. Environ Monit Assess 169:553–568. https://doi.org/10.1007/s10661-009-1196-y

    Article  Google Scholar 

  • Chidambaram S, Prasad MBK, Manivannan R, Karmegam U, Singaraja C, Anandhan P, Prasanna MV, Manikandan S (2013) Environmental hydrogeochemistry and genesis of fluoride in groundwaters of Dindigul district, Tamilnadu (India). Environ Earth Sci 68:333–342. https://doi.org/10.1007/s12665-012-1741-9

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313

    Article  Google Scholar 

  • Déri-Takács J, Eróss A, Kovács J (2014) The chemical characterization of the thermal waters in Budapest, Hungary by using multivariate exploratory techniques. Springer-Verlag Berlin Heidelberg. Environ Earth Sci. https://doi.org/10.1007/s12665-014-3904-3

  • Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176

    Article  Google Scholar 

  • Edmond JM, Palwer MR, Measures CF, Grant B, Stallard RF (1995) The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela. Geochim Cosmochim Acta 59:3301–3323

    Article  Google Scholar 

  • El-Naqa A, Al-Shayeb A (2009) Groundwater protection and management strategy in Jordan. Water Resour Manag 23:2379–2394

    Article  Google Scholar 

  • El-Naser H (1991) Groundwater resources of the deep aquifer systems in NW-Jordan: hydrogeological and hydrochemical quasi three-dimensional modelling-Hydrogeologie und Umwelt, Heft 3, p. 1–144, PhD Thesis, University of Würzburg

  • Eraifej N, Abu-Jaber N (1999) Geochemistry and pollution of shallow aquifers in the Mafraq area, North Jordan. Environ Geol 37(1–2):162–170

    Article  Google Scholar 

  • Fakir Y, Mernissi ME, Kreuser T, Berjami B (2002) Natural tracer approach to characterize groundwater in the coastal Sahel of Oualidia (Morocco). Environ Geol 43:197–202

    Article  Google Scholar 

  • Grobe M, Machel H (2002) Saline groundwater in the Müsterland Cretaceous Basin, Germany: clues to its origin and evolution. Pet Geol 19:307–322

    Article  Google Scholar 

  • Gupta S, Mahato A, Roy P, Datta JK (2008) Geochemistry of groundwater, Burdwan District, West Bengal, India. Environ Geol 53:1271–1282

    Article  Google Scholar 

  • Hadadin N, Qaqish M, Akawwi E, Bdour A (2010) Water shortage in Jordan-sustainable solutions. Desalination 250:197–202

    Article  Google Scholar 

  • Huang J, Banerjee A (1984) Hashemite Kingdom of Jordan. Water sector study. Sector report. World Bank report no. 4699–JO

  • Jones BF, Vengosh A, Rosenthal E, Yechieli Y (1999) Geochemical investigation of groundwater quality. In: Seawater intrusion in coastal aquifers—concepts, methods and practices. Kluwer, the Netherlands, pp 51–71

  • Kaiser HF (1958) The Varimax criterion for analytic rotation in factor analysis. Psychometrika 23b:187–200

    Article  Google Scholar 

  • Kattan Z (1996) Chemical and environmental isotope study of the fissured basaltic aquifer systems of Yarmouk Basin, Syria. In: Isotope field applications for groundwater studies in the Middle East. In Final Coordination Meeting of a Regional Technical Cooperation Project. Published by International Atomic Energy Agency, IAEA-TECDOC-890, IAEA, Ankara and Vienna, pp 151–184

  • Kim KH, Yun ST, Choi BY, Chae GT, Joo Y, Kim K, Kim HS (2009) Hydrochemical and multivariate statistical interpretations of spatial controls of nitrate concentrations in a shallow alluvial aquifer around oxbow lakes (Osong area, central Korea). Hydrol Earth Syst Sci 107:114–127

    Google Scholar 

  • Kudoda AM, Abdalla OAE (2015) Hydrochemical characterization of the main aquifers in Khartoum, the capital city of Sudan. Springer-Verlag Berlin Heidelberg. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4464-x

  • Li X, Li J, Xi B, Yuan Z, Zhu X, Zhang X (2015) Effects of groundwater level variations on the nitrate content of groundwater: a case study in Luoyang area, China. Springer-Verlag Berlin Heidelberg. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4016-4

  • Liu CW, Jang CS, Chen CP, Lin CN, Lou KL (2008) Characterization of groundwater quality in Kinmen Island using multivariate analysis and geochemical modeling. Hydrol Process 22:376–383

    Article  Google Scholar 

  • Machiwal D, Singh PK (2015) Understanding factors influencing groundwater levels in hard rock aquifer systems by using multivariate statistical techniques. Springer-Verlag Berlin Heidelberg. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4578-1

  • Mahlknecht J, Steinich B, Navarro de León I (2004) Groundwater chemistry and mass transfers in the independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Springer-Verlag. Environ Geol 45:781–795. https://doi.org/10.1007/s00254-003-0938-3

    Article  Google Scholar 

  • Marie A, Vengosh A (2001) Sources of salinity in groundwater from Jericho area, Jordan valley. Groundwater 39(2):240–248

    Article  Google Scholar 

  • Min JH, Yun ST, Kim K, Kim HS, Kim DJ (2003) Geologic controls on the chemical behavior of nitrate in riverside alluvial aquifers, Korea. Hydrol Proc 17:1197–1211

    Article  Google Scholar 

  • Obeidat MM, Massadeh AM, Al-Ajlouni AM, Athamneh FS (2007) Analysis and evaluation of nitrate levels in groundwater at Al-Hashimiya area, Jordan. Springer Science + Business Media B.V., Environ Monit Assess 135:475–486. doi:https://doi.org/10.1007/s10661-007-9667-5

  • Obeidat MM, Awawdeh M, Abu Al-Rub F (2012) Multivariate statistical analysis and environmental isotopes of Amman/Wadi Sir (B2/A7) groundwater, Yarmouk River Basin, Jordan. Hydrol Process, John Wiley & Sons, Ltd. 13 p. https://doi.org/10.1002/hyp.9245

  • Odeh T, Boulad N, Abed O, Abu Yahya A, Khries N, Abu-Jaber N (2017) The influence of geology on landscape typology in Jordan: theoretical understanding and planning implications. Land 6(51):1–13. https://doi.org/10.3390/land6030051

    Google Scholar 

  • Olobaniyi SB, Owoyemi FB (2006) Characterization by factor analysis of the chemical facies of groundwater in the deltaic plain sands aquifer of Warri, western Niger delta, Nigeria. Afr J Sci Tech Science and Engineering Series 7(1):73–81

    Google Scholar 

  • Panagopoulos G, Lambrakis N, Tsolis-Katagas P, Papoulis D (2004) Cation exchange processes and human activities in unconfined aquifers. Environ Geol 46:542–552

    Article  Google Scholar 

  • Perez JMS, Antiguedad I, Arrate I, Linares CG, Morelld I (2003) The influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: a case study. Sci Total Environ 317:173–187

    Article  Google Scholar 

  • Prasanna MV, Chidambaram S, Hameed HA, Srinivasamoorthy K (2009) Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ Monit Assess 168:63–90. https://doi.org/10.1007/s10661-009-1092-5

    Article  Google Scholar 

  • Prasanna MV, Chidambaram S, Srinivasamoorthy K (2010) Statistical analysis of the hydrogeochemical evolution of groundwater in hard and sedimentary aquifers system of Gadilam river basin, South India. J King Saud Univ (Sci) 22:133–145. https://doi.org/10.1016/j.jksus.2010.04.001

    Article  Google Scholar 

  • Pratheepa V, Ramesh S, Sukumaran N, Murugesan AG (2015) Identification of the sources for groundwater salinization in the coastal aquifers of southern Tamil Nadu, India. Springer-Verlag Berlin Heidelberg. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4303-0

  • Rao SN, Rao SP, Reddy VG, Nagamani M, Vidyasagar G, Satyanarayana NLVV (2012) Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River basin, Visakhapatnam District, Andhra Pradesh, India. Environ Monit Assess 184:5189–5214. https://doi.org/10.1007/s10661-011-2333-y

    Article  Google Scholar 

  • Rasouli F, Pouya AK, Cheraghi SAM (2012) Hydrogeochemistry and water quality assessment of the Kor-Sivand Basin, Fars Province, Iran. Environ Monit Assess 184:4861–4877. https://doi.org/10.1007/s10661-011-2308-z

    Article  Google Scholar 

  • Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinization. CRC, Boca Raton, p 258

    Google Scholar 

  • Salameh E (2004) Using environmental isotopes in the study of the recharge–discharge mechanisms of the Yarmouk catchment area in Jordan. Hydrogeol J 12(4):451–463

    Article  Google Scholar 

  • Saleem M, Jeelani G, Shah RA (2015) Hydrogeochemistry of Dal Lake and the potential for present, future management by using facies, ionic ratios, and statistical analysis. Springer-Verlag Berlin Heidelberg. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4361-3

  • Salman AS, Zaidi FK, Hussein MT (2014) Evaluation of groundwater quality in northern Saudi Arabia using multivariate analysis and stochastic statistics. Springer-Verlag Berlin Heidelberg. Environ Earth Sci. https://doi.org/10.1007/s12665-014-3803-7

  • Sawyer CN, McCarty PL (1968) Chemistry for sanitary engineers, 2nd edn. New York, McGraw-Hill

    Google Scholar 

  • Saxena VK, Mondal NC, Singh VS (2004) Identification of seawater ingress using Sr and B in Krishna delta. Curr Sci India 86(4):586–590

    Google Scholar 

  • Schoeller H (1965) Qualitative evaluation of groundwater resources. In: Methods and techniques of groundwater investigations and development. UNESCO, pp 54–83

  • Senthilkumar G, Ramanathan AL, Nainwal HC, Chidambaram S (2008) Evaluation on the hydrogeochemistry of groundwater using factor analysis in the Cuddalore coastal region, Tamilnadu, India. Indian J Mar Sci 37:2

    Google Scholar 

  • Singaraja C, Chidambaram S, Prasanna MV, Thivya C, Thilagavathi R (2014) Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India. Environ Earth Sci 71:451–464. https://doi.org/10.1007/s12665-013-2453-5

    Article  Google Scholar 

  • Soares dos Santos J, Oliveira E, Bruns RE, Gennari RF (2004) Evaluation of the salt accumulation process during inundation in water resource of Contas river basin (Bahia–Brasil) applying principal component analysis. Water Res 38:1579–1585

    Article  Google Scholar 

  • Srinivasamoorthy K, Chidambaram S, Anandhan P, Vasudevan S (2005) Application of statistical analysis of the hydrogeochemical study of groundwater in hard rock terrain, Salem District, Tamilnadu. J Geochem 20:181–190

    Google Scholar 

  • Ta’any RA, Batayneh AT, Jaradat RA (2007) Evaluation of groundwater quality in the Yarmouk Basin, North Jordan. J Environ Hydrol 15, Paper 28

  • Tizro TA, Voudouris KS (2008) Groundwater quality in the semi-arid region of the Chahardouly basin, West Iran. Hydrol Process 22:3066–3078

    Article  Google Scholar 

  • Todd DK (1980) Ground water hydrology. Wiley, New York

    Google Scholar 

  • Uddameri V, Honnungar V, Hernandez EA (2014) Assessment of groundwater water quality in central and southern Gulf Coast aquifer, TX using principal component analysis. Springer-Verlag Berlin Heidelberg. Environ Earth Sci 71:2653–2671. https://doi.org/10.1007/s12665-013-2896-8

    Article  Google Scholar 

  • Usunoff EJ, Guzmán-Guzmán A (1989) Multivariate analysis in hydrochemistry: an example of the use of factor and correspondence analyses. Ground Water 27:27–34

    Article  Google Scholar 

  • Venot JP, Molle F (2008) Groundwater depletion in the Jordan highlands: can pricing policies regulate irrigation water use? Water Resour Manag 22:1925–1941

    Article  Google Scholar 

  • Vogel JC (1970) Carbon-14 dating of groundwater. In Isotope hydrology, proceedings symposium of International Atomic Energy Agency and UNESCO, IAEA, Vienna, 225–239

  • WAJ (2010) Feasibility study, environmental and social impact assessment and detailed designs and bidding documents for Zarqa Governorate Wastewater System Reinforcement and Expansion Project. PREPARATORY WORKSTECHNICAL REPORT, p 127

  • WAJ, Water Authority of Jordan (1989) Yarmouk basin water resources study, Final Report. Unpubl. Rep. NorthJordan Water Resources Investigation Project; Amman

  • WDBP (Water Data Banks Project) (1998) Multilateral Working Group on Water Resources, Middle East Peace Process. Overview of Middle East Water Resources. http://exact-me.org/overview/p23.htm. Visited on 2 March 2011

  • WHO (World Health Organization) (1993) Guidelines for drinking water quality, recommendations, vol. 1, 2nd edn. Geneva, WHO

    Google Scholar 

  • Zilberbrand M, Rosenthal E, Shachnai E (2001) Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated zone gas composition in the coastal city of Tel Aviv, Israel. J Contam Hydrol 50:175–208

    Article  Google Scholar 

  • Zumlot T, Batayneh A, Nazal Y, Ghrefat H, Mogren S, Zaman H, Elawadi E, Laboun A, Qaisy S (2013) Using multivariate statistical analyses to evaluate groundwater contamination in the northwestern part of Saudi Arabia. Environ Earth Sci 70:3277–3287. https://doi.org/10.1007/s12665-013-2392-1 http://www.jordantimes.com/news/local/annual-water-capita-share-dropped-16-start-syrian-crisis%E2%80%99 (21-Aug-2017)

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to the laboratory of Water and Irrigation Authority in the Water Ministry, Amman, Jordan, and the Institute of Earth and Environmental Sciences, Al al-Bayt University, Jordan, for helping to water analyses. I am thankful to Mr. Sa’ed Abu Snineh for helping in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iyad Ahmed Abboud.

Additional information

Research area: Geochemistry, Environmental Geochemistry, Medical Geochemistry, Mineralogy, Quaternary studies, GIS, and Geomorphology

Electronic supplementary material

ESM 1

(XLSX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abboud, I.A. Statistical analysis of the hydro-geochemical evolution of groundwater in the aquifers of the Yarmouk basin, North Jordan. Arab J Geosci 11, 111 (2018). https://doi.org/10.1007/s12517-018-3448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3448-z

Keywords

Navigation