Advertisement

GIS-based GALDIT method for vulnerability assessment to seawater intrusion of the Quaternary coastal Collo aquifer (NE-Algeria)

  • Boulabeiz Mahrez
  • Stefan Klebingat
  • Belgacem Houha
  • Bousnoubra Houria
Original Paper
  • 109 Downloads

Abstract

The overexploitation of groundwater in coastal aquifers is often accompanied by seawater intrusion, intensified by climate change and sea level rise. Heading long-term water quality safety and thus the determination of vulnerable zones to seawater intrusion becomes a significant hydrogeological task for many coastal areas. Due to this background, the present study focussed the established methodology of the GIS-based GALDIT model to assess the aquifer vulnerability to seawater intrusion for the Algerian example of the Quaternary coastal Collo aquifer. According to the result analysis overall, more than half of the total surface of the northern study area can be classified as highly vulnerable. Besides the coastline, the areas nearby the local wadis of Guebli and Cherka occur to be the most vulnerable in the region. In view of further map removal performance as well as single-parameter sensitivity analyses from a coupled perspective respectively the GALDIT parameters, distance from the shore (D) and aquifer hydraulic conductivity (A) have been found to be of key significance regarding the model results (mean effective weightings ~ 18–19%). Overall, the study results provide a good approximation basis for future management decisions of the Collo aquifer region, including various perspectives such as identification of suitable settings for prospective groundwater pumping wells.

Keywords

Aquifer vulnerability Seawater intrusion GALDIT GIS Collo Algeria 

References

  1. Al-Hanbali A, Akihiko K (2008) Groundwater vulnerability assessment and evaluation of the human activity impact (HAI) within the Dead Sea groundwater basin, Jordan. Hydrogeol J 16(3):499–510.  https://doi.org/10.1007/s10040-008-0280-7 CrossRefGoogle Scholar
  2. Aller L, Bennet T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings, EPA/600/2-87-036. U.S. Environmental Protection Agency, Ada, Washington, D.C.Google Scholar
  3. Baghvand A, Nasrabadi T, Nabibidhendi G, Vosoogh A, Karbassi A, Mehradadi N (2010) Groundwater quality degradation of an aquifer in Iran central desert. Desalination 260(1–3):264–275CrossRefGoogle Scholar
  4. Belloulou L (1987) Hydrogeological study and evaluation of water resources of the Collo basin, Skikda, Algeria. Dissertation, The University of Arizona USAGoogle Scholar
  5. Bolduc A M, Ross M (2001) Surficial geology, Lachute-Oka, Québec. Geological Survey of Canada, Open File 3520, 1:50 000Google Scholar
  6. Bouillin JP, Kornprobst J (1974) Associations ultrabasiques de petite Kabylie: péridotite de type Alpin et complexe stratifié; comparaison avec les zones internes bético- rifaines. Bull Soc Geol Fr (Paris) XVI(7):183–194CrossRefGoogle Scholar
  7. Bouillin J P (1979) The transverse of Collo and El Milia (small Kabylie) : a key region for the interpretation of alpine tectonics in the coastal chain of Algeria. Soc Géol Fr Mém. 77pGoogle Scholar
  8. Boulabeiz, M., 2006. Evolution of chemical elements and risk assessment of groundwater pollution: the case of the plain of Collo, Northeast Algeria. Master Thesis. Annaba University 111 pGoogle Scholar
  9. C G G (General Company of Geophysics) (1965) geophysical prospection Report in the plain of Collo (following the request of the Rural Engineering Service and hydraulics agricultural district of Constantine), 20pGoogle Scholar
  10. Chabour N (2004) La surexploitation des eaux souterraines dans les plaines littorales : la nappe de Télezza dans la plaine de Collo (Nord-Est algérien) Science et technologie B – N°22, université de Constantine. pp. 127-132. http://revue.umc.edu.dz/index.php/b/article/viewFile/1297/1406
  11. Chachadi A G, Lobo-Ferreira J P (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: Part 2—GALDIT indicator descriptions. IAHS and LNEC, Proceedings of the 4th The Fourth Inter Celtic Colloquium on Hydrology and Management of Water Resources, held at Universidade do Minho, Guimarães, Portugal, July 11–13Google Scholar
  12. Chachadi, A G, Lobo-Ferreira, J P (2001) Seawater intrusion vulnerability mapping of aquifers using GALDIT method. Proc. Workshop on modelling in hydrogeology, Anna University, Chennai, pp.143 156, and in COASTIN A Coastal Policy Research. Newsletter, Number 4, March 2001. New Delhi, TERI, pp 7–9Google Scholar
  13. Courme-Rault M D (1985) Stratigraphie du miocène et chronologie comparée des déformations suivant deux transversales des Altasides orientales. Univ. Orléans, Algérie, Sicile (Thèse Doct.). (515 pp.)Google Scholar
  14. Courme-Rault MD, Coutelle A (1982) Le Miocène de la Soummam (Algérie): précisions sur l'âge de ces niveaux de base, existence d'un cycle inférieur anté-nappes sudtelliennes, corrélations. Géol Mediterr 2:99–107Google Scholar
  15. Denny SC, Allen DM, Journeay JM (2006) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15(3):483–493.  https://doi.org/10.1007/s10040-006-0102-8 CrossRefGoogle Scholar
  16. Djellit H (1987) Evolution tectono-métamorphique du socle kabyle et polarité de mise en place des nappes de flysch en Petite Kabylie occidentale. Univ. Orsay, Paris. (Thèse Doct.)Google Scholar
  17. Doerfliger N, Jeannin PY, Zwahlehn F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176CrossRefGoogle Scholar
  18. Food and Agriculture Organization (FAO) (2012) Online statistical yearbook of the Food and Agriculture Organization, (http://faostat.fao.org) Accessed 12 December 2012
  19. Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijvenbooden W, Van Waegeningh HG (eds) TNO committee on hydrological research, Vulnerability of soil and groundwater to pollutants, proceedings and information, vol 38. The Hague, The Netherlands, pp 69–86Google Scholar
  20. Gogu R, Dassargues A (1998) A short review of groundwater vulnerability assessment, basic statements for use in the framework of the cost 620 action. Workshop 18-20 May. Neuchâtel UniversityGoogle Scholar
  21. Goldscheider N (2002) Hydrogeology and vulnerability of karst systems – examples from theNorthern Alps and Swabian Alb.- Dissertation Universität Karlsruhe, Fakultät für Bio- und Geowissenschaften, 236 SGoogle Scholar
  22. IGN (Institut géographique national) (1960) Collo topographic map N° 3-4, Scale 1 :25000. Eds IGN Paris, FranceGoogle Scholar
  23. Lobo-Ferreira JP, Chachadi AG, Diamantino C, Henriques MJ (2007) Assessing aquifer vulnerability to seawater intrusion using the GALDIT method: part 1, application to the Portuguese Monte Gord aquifer. In: Lobo-Ferreira JP, Ferreira VJMP (eds) Proceedings water in Celtic countries: quantity, quality and climate variability, IAHS Publication 310. International Association of Hydrological Sciences, Wallingford, pp 161–171Google Scholar
  24. Lobo-Ferreira J P, Chachadi A G, Diamantino C, & Henriques M J (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: part 1—application to the Portuguese Aquifer of Monte Gordo. IAHS and LNEC, Proceedings of the 4th The Fourth Inter Celtic Colloquium on Hydrology and Management of Water Resources, held at Universidade do Minho, Guimarães, Portugal, July 11–13Google Scholar
  25. Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. Int J Geogr Info Syst 4:413–428CrossRefGoogle Scholar
  26. Madl-Szonyi J, Fule L (1998) Groundwater vulnerability assessment of the SW trans-Danubian central range, Hungary. Environ Geol 35:9–18CrossRefGoogle Scholar
  27. Mahdjoub Y, Choukroune P, Kienast JR (1997) Kinematics of a complex Alpine segment: superimposed tectonic and metamorphic events in the Petite Kabylie Massif (northern Algeria). Bull Soc Geol Fr 168:649–661Google Scholar
  28. Marre A (1987) Etude géomorphologique du Tell oriental algérien de Collo à la frontière tunisienne. Thèse lettre, Aix Marseille II, 2 vol, 559 pGoogle Scholar
  29. MED-EUWI (2007) Technical report on groundwater management in the Mediterranean and the WaterFramework Directive Mediterranean groundwater working group (med-euwi wg on groundwater). http://www.semide.net/initiatives/medeuwi/JP/GroundWater
  30. Minmeliovodkhoz, (1968), Irrigation de la Plaine de Collo, DHW, Skikda, Algeria, 59 pp (study report). Unpublished documentsGoogle Scholar
  31. Napolitano P, Fabbri AG (1996) Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Kovar K, Nachtnebel HP (eds) Proc HydroGIS: application of geographical information systems in hydrology and water resources management, IAHS Publ. 235. IAHS, Wallingford, UK, pp 559–566Google Scholar
  32. NAWR (2014) National agency of water resources. Climatic data. Internal document. Regional direction, Constantine, AlgeriaGoogle Scholar
  33. NAWR (National Agency of Water Resources) (1974) Hydrogeological study of the Collo plain, report of the national agency of water resources, Constantine Dpt. 37p. Algeria Unpublished documentsGoogle Scholar
  34. Niazi S (2007) Assessment of the impacts of climate change and rising of the sea level on the coast of Tetouan (Western Mediterranean of morocco), vulnerability and adaptation. PhD thesis, Mohamed V University, Sciences faculty, Rabat, Morocco, 298pGoogle Scholar
  35. Raoult J F (1974) Géologie du centre de la chaîne numidique (Nord du Constantinois, Algérie). (Thèse, Paris), Soc Géol Fr Mém, Nouvelle, Série, LIII, No. 121, 163pGoogle Scholar
  36. Rasmussen P, Sonnenborg TO, Goncear G, Hinsby K (2013) Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrol Earth Syst Sci 17:421–443CrossRefGoogle Scholar
  37. Revelle R (1941) Criteria for recognition of sea water in ground waters. Eos Trans AGU 22(3):593–597.  https://doi.org/10.1029/TR022i003p00593 CrossRefGoogle Scholar
  38. Ribeiro L (2000) IS: um novo indice de susceptibilidade de aquiferos à contaminaçào agricola [SI: a new index of aquifer susceptibility to agricultural pollution]. Internal report, ERSHA/CVRM, Instituto Superior Técnico, Lisbon, Portugal, 12 ppGoogle Scholar
  39. Van Stempvoort D, Ewert L, Wassenaar L (1993) Aquifer vulnerability index (AVI): a GIS compatible method for groundwater vulnerability mapping. Can Water Res J 18:25–37CrossRefGoogle Scholar
  40. Vila J M (1980) La chaîne alpine de L’Algérie orientale et des confins algéro-tunisiens. Thèse de Doctorat, Paris VI, 663pGoogle Scholar
  41. Vironika I, Judit MS (2017) State of the art of karst vulnerability assessment: overview, evaluation and outlook. Environ Earth Sci 76(3):112.  https://doi.org/10.1007/s12665-017-6422-2 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Boulabeiz Mahrez
    • 1
  • Stefan Klebingat
    • 2
  • Belgacem Houha
    • 1
  • Bousnoubra Houria
    • 3
  1. 1.Department of Ecology and EnvironmentAbbas Laghrour UniversityKhenchelaAlgeria
  2. 2.Department of Engineering Geology and HydrogeologyRWTH Aachen UniversityAachenGermany
  3. 3.Department of HydraulicBadji Mokhtar UniversityAnnabaAlgeria

Personalised recommendations