Generation of stochastic earthquake ground motion in western Saudi Arabia as a first step in development of regional ground motion prediction model

Original Paper
  • 70 Downloads

Abstract

Earthquake ground motion model is an essential part of seismic hazard assessment. The model consists in several empirical ground motion prediction equations (GMPEs) that are considered to be applicable to the given region. When the recorded ground motion data are scarce, numerical modeling of ground motion based on available seismological information is widely used. We describe results of stochastic simulation of ground motion acceleration records for western Saudi Arabia. The simulation was performed using the finite fault model and considering peak ground acceleration and amplitudes of spectral acceleration at natural frequencies 0.2 and 1.0 s. Based on the parameters of the input seismological model that were accepted in similar previous studies, we analyze influence of variations in the source factor (stress drop) and in the local attenuation and amplification factors (kappa value, crustal amplification). These characteristics of the model are considered as the major contributors to the ground motion variability. The results of our work show that distribution of simulated ground motion parameters versus magnitude and distance reveals an agreement with the GMPEs recently used in seismic hazard assessment for the region. Collection of credible information about seismic source, propagation path, and site attenuation parameters using the regional ground motion database would allow constraining the seismological model and developing regional GMPEs. The stochastic simulation based on regional seismological model may be applied for generation of ground motion time histories used for development of analytical fragility curves for typical constructions in the region.

Keywords

Stochastic simulation Ground motion model Western Saudi Arabia 

Notes

Acknowledgements

The work has been performed in the National Center for Earthquakes and Volcanoes, Saudi Geological Survey, Jeddah, Kingdom of Saudi Arabia. The comments of anonymous reviewers are gratefully acknowledged.

References

  1. Akkar S, Sandikkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):359–387.  https://doi.org/10.1007/s10518-013-9461-4 CrossRefGoogle Scholar
  2. Al Amri A, Abdelrahman K, Andreae MO, Al-Dabbagh M (2017) Crustal and upper mantle structures beneath the Arabian Shield and Red Sea. In: Roure F, Amin A, Khomsi S, Al Garni M (eds) Lithosphere dynamics and sedimentary basins of the Arabian Plate and surrounding areas. Frontiers in Earth Sciences. Springer, pp 3–29, doi:  https://doi.org/10.1007/978-3-319-44726-1_1
  3. Al Atik L, Abrahamson N, Bommer JJ, Scherbaum F, Cotton F, Kuehn N (2010) The variability of ground-motion prediction models and its components. Seismol Res Lett 81(5):794–801.  https://doi.org/10.1785/gssrl.81.5.794 CrossRefGoogle Scholar
  4. Al-Besher ZI (2013) Seismic hazard assessment for Tabuk City, NW Saudi Arabia. Journal of Geoscience and Environment Protection 1(3):7–11.  https://doi.org/10.4236/gep.2013.13002 CrossRefGoogle Scholar
  5. Albidah A, Altheeb A, Lam N (2011) Stochastic attenuation modeling: Saudi Arabian case study. Australian Earthquake Engineering Society Conference, 18–20 November 2011, Novotel Barossa Valley, South AustraliaGoogle Scholar
  6. Aldamegh K, Sandvol E, Barazangi M (2005) Crustal structure of the Arabian plate: new constraints from the analysis of teleseismic receiver functions. Earth Planet Sci Lett 231:177–196CrossRefGoogle Scholar
  7. Aldamegh KS, Elenean KA, Hussein HM, Rodgers AJ (2009) Source mechanisms of the June 2004 Tabuk earthquake sequence, eastern Red Sea margin, Kingdom of Saudi Arabia. J Seismol 13(4):561–576.  https://doi.org/10.1007/s10950-008-9148-5 CrossRefGoogle Scholar
  8. Al-Haddad M, Al-Refeai T, Al-Amri A (2001) Geotechnical investigation for earthquake resistant design in the Kingdom, phase I, western coast. Final report, King Abdulaziz City for Science and Technology, (KACST- grant no. AR-14-77), RiyadhGoogle Scholar
  9. Almadani S, Al-Amri A, Fnais M, Abdelrahman K, Ibrahim E, Abdelmoneim E (2015) Seismic hazard assessment for Yanbu metropolitan area, western Saudi Arabia. Arab J Geosci 8(11):9945–9958.  https://doi.org/10.1007/s12517-015-1930-4 CrossRefGoogle Scholar
  10. Al-Malki MA, Al-Amri AM (2013) Seismic zones regionalization and hazard assessment of SW Arabian Shield and southern Red Sea region. In: Al Hosani K et al., (eds.) Lithosphere dynamics and sedimentary basins: the Arabian plate and analogues, Springer Frontiers in Earth Sciences, 317-331, doi:  https://doi.org/10.1007/978-3-642-30609-9-16
  11. Ambraseys NN, Melville CP, Adams RD (1994) The seismicity of Egypt, Arabia and the Red Sea: a historical review. Cambridge University Press, Great Britain, 181 pp.  https://doi.org/10.1017/CBO9780511524912 CrossRefGoogle Scholar
  12. Ameri G, Drouet S, Traversa P, Bindi D, Cotton F (2017) Toward an empirical ground motion prediction equation for France: accounting for regional differences in the source stress parameter. Bull Earthq Eng, online first 15(11):4681–4717.  https://doi.org/10.1007/s10518-017-0171-1 CrossRefGoogle Scholar
  13. Anderson J, Hough S (1984) A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74:1969–1993Google Scholar
  14. Assatourians K, Atkinson GM (2007) Modeling variable-stress distribution with the stochastic finite-fault technique. Bull Seismol Soc Am 97(6):1935–1949.  https://doi.org/10.1785/120060203 CrossRefGoogle Scholar
  15. Atkinson GM, Boore DM (1995) Ground-motion relations for eastern North America. Bull Seismol Soc Am 85:17–30Google Scholar
  16. Atkinson GM, Boore DM (1998) Evaluation of models for earthquake source spectra in eastern North America. Bull Seismol Soc Am 88:917–934Google Scholar
  17. Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96(6):2181–2205.  https://doi.org/10.1785/0120050245 CrossRefGoogle Scholar
  18. Atkinson GM, Boore DM (2011) Modifications to existing ground-motion prediction equations in light of new data. Bull Seismol Soc Am 101(3):1121–1135.  https://doi.org/10.1785/0120100270 CrossRefGoogle Scholar
  19. Atkinson GM, Assatourians K, Boore DM, Campbell K, Motazedian D (2009) A guide to differences between stochastic point-source and stochastic finite-fault simulations. Bull Seismol Soc Am 99:3192–3201.  https://doi.org/10.1785/1020090058. CrossRefGoogle Scholar
  20. Beresnev IA, Atkinson GM (1997) Modeling finite-fault radiation from the ωn spectrum. Bull Seismol Soc Am 87:67–84Google Scholar
  21. Beresnev IA, Atkinson GM (1998) FINSIM—a FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismol Res Lett 69(1):27–32.  https://doi.org/10.1785/gssrl.69.1.27 CrossRefGoogle Scholar
  22. Beresnev IA, Atkinson GM (1999) Generic finite-fault model for ground-motion prediction in eastern North America. Bull Seismol Soc Am 89:608–625Google Scholar
  23. Bommer JJ (2012) Challenges of building logic trees for probabilistic seismic hazard analysis. Earthquake Spectra 28(4):1723–1735.  https://doi.org/10.1193/1.4000079 CrossRefGoogle Scholar
  24. Bommer JJ, Douglas J, Scherbaum F, Cotton F, Bungum H, Fäh D (2010) On the selection of ground-motion prediction equations for seismic hazard analysis. Seismol Res Lett 81(5):783–793.  https://doi.org/10.1785/gssrl.81.5.783 CrossRefGoogle Scholar
  25. Bommer JJ, Coppersmith KJ, Coppersmith RT, Hanson KL, Mangongolo A, Neveling J, Rathje EM, Rodriguez-Marek A, Scherbaum F, Shelembe R, Stafford PJ, Strasser FO (2015) A SSHAC level 3 probabilistic seismic hazard analysis for a new-build nuclear site in South Africa. Earthquake Spectra 31(2):661–698.  https://doi.org/10.1193/060913EQS145M CrossRefGoogle Scholar
  26. Bora SS, Cotton F, Sherbaum F, Edwards B, Traversa P (2017) Stochastic source, path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes. Bulletin Earthq Eng, online first 15(11):4531–4561.  https://doi.org/10.1007/s10518-017-0167-x CrossRefGoogle Scholar
  27. Boore DM (1983) Stochastic simulation of high-frequency ground motion based on seismological model of the radiated spectra. Bull Seismol Soc Am 73:1865–1894Google Scholar
  28. Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160(3):635–676.  https://doi.org/10.1007/PL00012553 CrossRefGoogle Scholar
  29. Boore DM (2015). Notes on relating density to velocity for use in site amplification calculations. http://www.daveboore.com/daves_notes/daves_notes_on_relating_density_to_velocity_v3.0.pdf
  30. Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra 24(1):99–138.  https://doi.org/10.1193/1.2830434 CrossRefGoogle Scholar
  31. Boore DM, Thompson EM (2014) Path durations for use in the stochastic-method simulation of ground motions. Bull Seismol Soc Am 104(5):2541–2552.  https://doi.org/10.1785/0120140058 CrossRefGoogle Scholar
  32. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75(26):4997–5009.  https://doi.org/10.1029/JB075i026p04997 CrossRefGoogle Scholar
  33. Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5%-damped linear elastic response spectra at periods ranging from 0.1 s to 10.0 s. Earthquake Spectra 24(1):139–171.  https://doi.org/10.1193/1.2857546 CrossRefGoogle Scholar
  34. Chandler A, Lam N, Tsang H (2006) Near surface attenuation modelling based on rock shear—wave velocity profile. Soil Dyn Earthq Eng 26(11):1004–1014CrossRefGoogle Scholar
  35. Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to central Europe and rock sites. J Seismol 10(2):137–156.  https://doi.org/10.1007/s10950-005-9006-7 CrossRefGoogle Scholar
  36. D’Amico M, Tiberti MM, Russo E, Pacor F, Basili R (2017) Ground-motion variability for single site and single source through deterministic stochastic method simulations: implications for PSHA. Bulletin of the seismological Society of America 107: 966-983, doi: 0.1785/0120150377Google Scholar
  37. Danciu L, Kale O, Akkar S (2016) The 2014 earthquake model of the Middle East: ground motion model and uncertainties. Bull Earthq Eng.  https://doi.org/10.1007/s10518-016-9989-1
  38. Drouet S, Cotton F (2015) Regional stochastic GMPEs in low-seismicity areas: scaling and aleatory variability analysis—application to the French Alps. Bull Seismol Soc Am 105(4):1883–1902.  https://doi.org/10.1785/0120140240 CrossRefGoogle Scholar
  39. Drouet S, Chevrot S, Cotton F, Souriau A (2008) Simultaneous inversion of source spectra, attenuation parameters, and site responses: application to the data of the French accelerometric network. Bull Seismol Soc Am 98(1):198–219.  https://doi.org/10.1785/0120060215 CrossRefGoogle Scholar
  40. Drouet S, Cotton F, Gueguen P (2010) Vs30, κ, regional attenuation and MW from small magnitude events accelerogramms. Geophys J Int 182:880–898CrossRefGoogle Scholar
  41. Edwards B, Fäh F (2013) A stochastic ground-motion model for Switzerland. Bull Seismol Soc Am 103(1):78–98.  https://doi.org/10.1785/0120110331 CrossRefGoogle Scholar
  42. El-Hadidy SY (2015) Seismicity and seismotectonic setting of the Red Sea and adjacent areas. In: Rasul NMA, Stewart ICF (eds.), The Red Sea, Springer, pp 151–159Google Scholar
  43. Fnais FS (2011) Ground-motion simulation for the Eastern province of Saudi Arabia using a stochastic model. WIT transactions on the built. Environment 120.  https://doi.org/10.2495/ERES110121
  44. Hamzehloo H, Mahood M (2012) Ground-motion attenuation relationship for East Central Iran. Bull Seismol Soc Am 102(6):2677–2684.  https://doi.org/10.1785/0120110249 CrossRefGoogle Scholar
  45. Hanks TC, McGuire RK (1981) The character of high frequency strong ground motion. Bull Seismol Soc Am 71:2071–2095Google Scholar
  46. Hartzell SH (1978) Earthquake aftershocks as Green’s functions. Geophys Res Lett 5(1):1–4.  https://doi.org/10.1029/GL005i001p00001 CrossRefGoogle Scholar
  47. Ghofrani H, Atkinson GM, Goda K, Assatourians K (2013) Stochastic finite-fault simulations of the 2011 Tohoku, Japan, earthquake. Bull Seismol Soc Am 103(2B):1307–1320.  https://doi.org/10.1785/0120120228 CrossRefGoogle Scholar
  48. Graves R, Pitarka A (2010) Broadband ground motion simulation using a hybrid approach. Bull Seismol Soc Am 100(5A):2095–2123.  https://doi.org/10.1785/0120100057 CrossRefGoogle Scholar
  49. Gusev AA, Pavlov VM (2009) Broadband simulation of earthquake ground motion by a spectrum-matching, multiple-pulse technique. Earthquake Spectra 25(2):257–276.  https://doi.org/10.1193/1.3105335 CrossRefGoogle Scholar
  50. Kale Ö, Akkar S (2017) A ground-motion logic-tree scheme for regional seismic hazard studies. Earthq Spectra, in press, doi 33(3):837–856.  https://doi.org/10.1193/051316EQS080M CrossRefGoogle Scholar
  51. Klinger Y, Rivera L, Haessler M, Maurin JC (1999) Active faulting in the Gulf of Aqaba: new knowledge from the Mw 7.3 earthquake of 22 November 1995. Bull Seismol Soc Am 89:1025–1036Google Scholar
  52. Klügel J-U, Mualchin L, Panza GF (2006) A scenario-based procedure for seismic risk analysis. Eng Geol 88:1–22CrossRefGoogle Scholar
  53. Mai PM, Beroza GC (2003) A hybrid method for calculating near-source broadband seismograms: application to strong motion prediction. Phys Earth Planet Inter 137:183–199CrossRefGoogle Scholar
  54. Malagnini L, Scognamiglio L, Mercuri A, Akinci A, Mayeda K (2008) Strong evidence for non-similar earthquake source scaling in central Italy. Geophys Res Lett 35(17):L17303.  https://doi.org/10.1029/2008GL034310 CrossRefGoogle Scholar
  55. Moratto L, Vuan A, Saraò A (2015) A hybrid approach for broadband simulations of strong ground motion: the case of the 2008 Iwate–Miyagi Nairiku earthquake. Bull Seismol Soc Am 105(5):2823–2829.  https://doi.org/10.1785/0120150054 CrossRefGoogle Scholar
  56. Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95(3):995–1010.  https://doi.org/10.1785/0120030207 CrossRefGoogle Scholar
  57. Oth A, Bindi D, Parolai S, Wenzel F (2008) S-wave attenuation characteristics beneath the Vrancea region in Romania: new insights from the inversion of ground-motion spectra. Bull Seismol Soc Am 98(5):2482–2497.  https://doi.org/10.1785/0120080106 CrossRefGoogle Scholar
  58. Oth A, Bindi D, Parolai S, Di Giacomo D (2011) Spectral analysis of K-NET and KiK-net data in Japan, part II: on attenuation characteristics, source spectra, and site response of borehole and surface stations. Bull Seismol Soc Am 101(2):667–687.  https://doi.org/10.1785/0120100135 CrossRefGoogle Scholar
  59. Pankow KL, Pechmann JC (2004) The SEA99 ground-motion predictive relations for extensional tectonic regimes: revisions and a new peak ground velocity relation. Bull Seismol Soc Am 94(1):341–348.  https://doi.org/10.1785/0120030010 CrossRefGoogle Scholar
  60. Panza GF, Peresan A, La Mura C (2013) Seismic hazard and strong ground motion: an operational neo-deterministic approach from national to local scale. Geophysics and geochemistry, [Eds. UNESCO-EOLSS joint Committee], Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO, Eolss publishers, Oxford ,UK, [http://www.eolss.net]
  61. Pasyanos M, Matzel E, Walter W, Rodgers A (2009) Broad-band Lg attenuation modelling in the Middle East. Geophys J Int 177(3):1166–1176.  https://doi.org/10.1111/j.1365-246X.2009.04128.x CrossRefGoogle Scholar
  62. Rietbrock A, Strasser F, Edwards B (2013) A stochastic earthquake ground-motion prediction model for the United Kingdom. Bull Seismol Soc Am 103:57–77.  https://doi.org/10.1785/0120110231. CrossRefGoogle Scholar
  63. Saragoni GR, Hart GC (1974) Simulation of artificial earthquakes. Earthq Eng Struct Dyn 2:249–268CrossRefGoogle Scholar
  64. Saudi Building Code SBC-301-2007. Loads and Forces Requirements. Saudi Building Code National CommitteeGoogle Scholar
  65. Singh NM, Rahman T, Wong IG (2016) A new ground-motion prediction model for northeastern India (NEI) crustal earthquakes. Bull Seismol Soc Am 106:1282–1297.  https://doi.org/10.1785/0120150180. CrossRefGoogle Scholar
  66. Sokolov V (2017) Seismic hazard analysis based on maximum credible earthquakes. Bull Earthq Eng 15(5):1831–1852.  https://doi.org/10.1007/s10518-016-0059-5 CrossRefGoogle Scholar
  67. Sokolov V, Wenzel F (2013) Spatial correlation of ground-motions in estimating seismic hazard to civil infrastructure. In: Tesfamariam S, Goda K (eds) Seismic risk analysis and Management of Civil Infrastructure Systems. Woodhead Publishing Ltd, Cambridge, pp 57–78.  https://doi.org/10.1533/9780857098986.1.57 Google Scholar
  68. Sokolov V, Bonjer K-P, Oncescu M, Rizescu M (2005) Hard rock spectral models for intermediate-depth Vrancea, Romania, earthquakes. Bull Seismol Soc Am 95(5):1749–1765.  https://doi.org/10.1785/0120050005 CrossRefGoogle Scholar
  69. Sokolov V, Zahran HM, El-Hadidy SY, El-Hadidy M, Alraddi WW (2017) Seismic hazard assessment for Saudi Arabia using spatially smoothed seismicity and analysis of hazard uncertainty. Bull Earthq Eng 15(7):2695–2735.  https://doi.org/10.1007/s10518-016-0075-5 CrossRefGoogle Scholar
  70. Sokolov V, Bonjer K-P, Wenzel F, Grecu B, Radulian M (2008) Ground-motion prediction equations for the intermediate depth Vrancea (Romania) earthquakes. Bull Earthq Eng 6(3):367–388.  https://doi.org/10.1007/s10518-008-9065-6 CrossRefGoogle Scholar
  71. Strasser FO, Abrahamson NA, Bommer JJ (2009) Sigma: issues, insights and challenges. Seismol Res Lett 80(1):40–56.  https://doi.org/10.1785/gssrl.80.1.40 CrossRefGoogle Scholar
  72. Vakov AV (1996) Relationships between earthquake magnitude, source geometry and slip mechanism. Tectonophysics 261(1-3):97–113.  https://doi.org/10.1016/0040-1951(96)82672-2 CrossRefGoogle Scholar
  73. Van Houtte C, Drouet S, Cotton F (2011) Analysis of the origins of (kappa) to compute hard rock to rock adjustment factors for GMPEs. Bull Seismol Soc Am 101:2926–2941.  https://doi.org/10.1785/0120100345. CrossRefGoogle Scholar
  74. Yenier E, Atkinson G (2015a) An equivalent point-source model for stochastic simulation of earthquake ground motions in California. Bull Seismol Soc Am 105(3):1435–1455.  https://doi.org/10.1785/0120140254 CrossRefGoogle Scholar
  75. Yenier E, Atkinson G (2015b) Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations: application to central and eastern North America. Bull Seismol Soc Am 105(4):1989–2009.  https://doi.org/10.1785/0120140332 CrossRefGoogle Scholar
  76. Zafarani H, Hassani B (2013). Site response and source spectra of S waves in the Zagros region, Iran. Journal of seismology 17: 645-666, doi: 10.1007:s10950-012-9344-1Google Scholar
  77. Zafarani H, Soghrat M (2012) Simulation of ground motion in Zagros region in Iran using the specific barrier model and stochastic method. Bull Seismol Soc Am 102(5):2031–2045.  https://doi.org/10.1785/0120110315 CrossRefGoogle Scholar
  78. Zafarani H, Noorzad A, Ansari A, Bargi K (2009). Stochastic modeling of Iranian earthquakes and estimation of ground motion for future earthquakes in greater Tehran. Soil Dynamics and Earthquake Engineering 29: 722-741, doi: 1016/j/soildyn.2008.08.002Google Scholar
  79. Zahran HM, El-Hady SM (2017) Seismic hazard assessment for Harrat Lunayyir—a lava field in western Saudi Arabia. Soil Dyn Earthq Eng 200:428–444CrossRefGoogle Scholar
  80. Zahran HM, Sokolov V, El-Hadidy SY, Alraddi WW (2015) Preliminary probabilistic seismic hazard assessment for the Kingdom of Saudi Arabia based on combined areal source model: Monte Carlo approach and sensitivity analyses. Soil Dyn Earthq Eng 77:453–468.  https://doi.org/10.1016/j.soildyn.2015.06.011 CrossRefGoogle Scholar
  81. Zahran HM, Sokolov V, Roobol MJ, Stewart ICF, El-Hadidy SY, El-Hadidy M (2016) On the development of a seismic source zonation model for seismic hazard assessment in western Saudi Arabia. J Seismol 20(3):747–769.  https://doi.org/10.1007/s10950-016-9555-y CrossRefGoogle Scholar
  82. Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y (2006) Attenuation relations of strong ground motion in Japan using site classifications based on predominant period. Bull Seismol Soc Am 96(3):898–913.  https://doi.org/10.1785/0120050122 CrossRefGoogle Scholar
  83. Zuccolo E, Vaccari F, Peresan A, Panza GF (2011) Neo-deterministic and probabilistic seismic hazard assessments: a comparison over the Italian territory. Pure Appl Geophys 168(1–2):69–83.  https://doi.org/10.1007/s00024-010-0151-8 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.National Center for Earthquakes and VolcanoesSaudi Geological SurveyJeddahKingdom of Saudi Arabia

Personalised recommendations