Contamination levels and vertical distribution of trace metals with application of geochemical indices in the sediment cores of the Bizerte Lagoon-Ichkeul lake complex in northeastern Tunisia

  • Bochra Brik
  • Abdelwaheb Aydi
  • Chadia Riahi
  • Ali Sdiri
  • Kamel Regaya
ICIEM 2016
  • 142 Downloads
Part of the following topical collections:
  1. Water Resource Management for Sustainable Development

Abstract

The “Bizerte Lagoon-Ichkeul Lake complex” represents an ecosystem where the Tinja channel connected the Ichkeul Lake to the Bizerte lagoon. For a rigorous environmental assessment of pollution status, 17 core samples were collected in the complex area. The main purpose was to follow vertical distribution of trace metals and evaluate their potential contamination levels via an integrated geochemical approach. The collected samples were subjected to physicochemical characterization by several analytical techniques. Our results indicated that the mean concentrations of Cd, Cu, Pb, Mn, Zn, and Fe reached 2.31, 2.23, 33.22, 100.88, 40.79, and 605.05 mg/kg, respectively. They followed the order of Fe > Mn > Zn > Pb > Cd > Cu. The highest metal concentrations were found in samples close to industrial and urban areas transferred via the surrounding rivers. Those concentrations were lower than the effects range low (ERL), the effects range median (ERM), the threshold effect level (TEL), and the probable effect level (PEL), except for Cd and Pb. In addition, measured enrichment factor (EF), the geo-accumulation index (Igeo), and contamination factor (CF) proved the anthropogenic origin of all the potentially toxic metals studied. A low contamination for Cu, Mn, Zn, and Fe combined with very high contamination levels of Cd and Pb further confirmed the high anthropogenic input.

Keywords

Vertical distribution Potentially toxic metals Geochemical indices Bizerte Lagoon-Ichkeul Lake complex 

Notes

Acknowledgements

These analyses were carried out at the “Institut National de Recherche Agronomique de Tunis.”

References

  1. Amin B, Ismail A, Arshad A, Kong YC, Kamarudin MS (2009) Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environ Monit Assess 148(1-4):291–305.  https://doi.org/10.1007/s10661-008-0159-z CrossRefGoogle Scholar
  2. ANPE (2007) Report on the scientific monitoring in the Ichkeul National Park, year 2006-2007. 86 p. Ministry of the Environment and sustainable development, republic of TunisiaGoogle Scholar
  3. Aydi A (2015) Assessment of heavy metal contamination risk in soils of landfill of Bizerte (Tunisia) with a focus on application of pollution indicators. Environ Earth Sci 74(4):3019–3027.  https://doi.org/10.1007/s12665-015-4332-8 CrossRefGoogle Scholar
  4. Barhoumi B, Elbarhoumi A, Cle’randeau C, Al-Rawabdeh AM, Atyaoui A, Touil S, Driss MR, Cachot J (2016) Using an integrated approach to assess the sediment quality of an Mediterranean lagoon, the Bizerte lagoon (Tunisia). Ecotoxicology 25(6):1082–1104.  https://doi.org/10.1007/s10646-016-1664-4 CrossRefGoogle Scholar
  5. Bejaoui B, Harzallah A, Moussa M, Chapelle A, Solidoro C (2008) Analysis of hydrobiological pattern in the Bizerte lagoon (Tunisia). Est Coast Shelf Sci 80(1):121–129.  https://doi.org/10.1016/j.ecss.2008.07.011 CrossRefGoogle Scholar
  6. Bellucci LG, Frignani M, Paolucci D, Ravanelli M (2002) Distribution of heavy metals in sediments of the Venice lagoon: the role of the industrial area. Sci Total Environ 295(1–3):35–49.  https://doi.org/10.1016/S0048-9697(02)00040-2 CrossRefGoogle Scholar
  7. Ben Garali A, Ouakad M, Gueddari M (2011) The Bizerte lagoon is classified in the category of medium salinity environments geochemistry and ionic interaction in the Bizerte lagoon waters (northern Tunisia). J Oceanogr Mar Sci 2(1):1–9Google Scholar
  8. Ben Garali A, Ouakad M, Gueddari M (2013) Episodic sedimentation of heavy metals and iron in Bizerte lagoon, northern Tunisia. Int J Geosci 4(01):24–35.  https://doi.org/10.4236/ijg.2013.41003 CrossRefGoogle Scholar
  9. Ben Khedher S, Jebali J, Kamel N, Banni M, Rameh M, Jrad A, Boussetta H (2013) Biochemical effects in crabs (Carcinus maenas) and contamination levels in the Bizerta lagoon: an integrated approach in biomonitoring of marine complex pollution. Environ Sci Pollut Res 20(4):2616–2631.  https://doi.org/10.1007/s11356-012-1156-x CrossRefGoogle Scholar
  10. Bhuiyan MA, Parvez L, Islam MA, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173(1):384–392.  https://doi.org/10.1016/j.jhazmat.2009.08.085 CrossRefGoogle Scholar
  11. Bing H, Wu Y, Nahm H, Liu E (2013) Accumulation of heavy metals in the lacustrine sediment of Longgan Lake, middle reaches of Yangtze River, China. Environ Earth Sci 69(8):2679–2689.  https://doi.org/10.1007/s12665-012-2090-4 CrossRefGoogle Scholar
  12. Boufahja F, Beyrem H, Essid N, Amorri J, Mahmoudi E, Aissa P (2007) Morphometry, energetics and diversity of free-living nematodes from coasts of Bizerte lagoon (Tunisia): an ecological meaning. Cah Biol Mar 48(2):121–137Google Scholar
  13. Buchman MF (2008) NOAA screening quick reference tables, NOAA OR&R Report 08–1. Office of Response and Restoriation Division, National Oceanic and Atmospheric Administration, Seattle, p 34Google Scholar
  14. Caeiro S, Costa MN, Ramos TB, Fernandes F, Silveira N (2005) Assessing heavy metal contamination in Sado estuary sediment: an index analysis approach. Ecol Indic 5(2):151–169.  https://doi.org/10.1016/j.ecolind.2005.02.001 CrossRefGoogle Scholar
  15. Canadian sediment quality guidelines for the protection of aquatic life (2002) Available in Internet: https://www.elaw.org/system/files/sediment_summary_table.pdf
  16. Carp E (1980) Directory of wetlands of international importance in the western Palearctic. IUCNGoogle Scholar
  17. Chen CF, Ju YR, Chen CW, Don CD (2016) Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor, Taiwan. Chemosphere 165:67–79CrossRefGoogle Scholar
  18. Clarke KR, Goreley RN (2005) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Routines In Multivariate Ecological Research: PRIMER-EGoogle Scholar
  19. Dellali M, Elbour M, Assa P (2001) Evaluation de la pollution bactérienne dans la lagune de Bizerte: Résultats préliminaires. J Rech Océanograp 26:18–28Google Scholar
  20. Dong JH, Yu M, Bian ZF, Wang Y, Di CL (2011) Geostatistical analyses of heavy metal distribution in reclaimed mine land in Xuzhou, China. Environ Earth Sci 62(1):127–137.  https://doi.org/10.1007/s12665-010-0507-5 CrossRefGoogle Scholar
  21. Duman F, Aksoy A, Demirezen D (2007) Seasonal variability of heavy metals in surface sediment of Lake Sapanca, Turkey. Environ Monit Assess 133(1-3):277–283.  https://doi.org/10.1007/s10661-006-9580-3 CrossRefGoogle Scholar
  22. Ennouri R, Chouba L, Magni M, Kraiem M (2010) Spatial distribution of trace metals (Cd, Pb, g, Cu, Zn, Fe and Mn) and oligo-elements (Mg, Ca, Na and K) in surface sediments of the Gulf of Tunis (northern Tunisia). Environ Monit Assess 163:229–239CrossRefGoogle Scholar
  23. Equeenuddin Sk Md, Tripathy S, Sahoo PK (2013) Metal behavior in sediment associated with acid mine drainage stream: role of PH. J Geochem Explor 124:230–237Google Scholar
  24. Gaur VK, Gupta SK, Pandey SD, Gopal K, Misra V (2005) Distribution of heavy metals in sediment and water of River Gomti. Environ Monit Assess 102(1-3):419–433.  https://doi.org/10.1007/s10661-005-6395-6 CrossRefGoogle Scholar
  25. Ghannem N, Gargouri D, Sarbeji MM, Yaich C, Azri C (2014) Metal contamination of surface sediments of the Sfax–Chebba coastal line, Tunisia. Environ Earth Sci 72(9):34193427CrossRefGoogle Scholar
  26. Hakanson L (1980) Ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14(8):975–1001.  https://doi.org/10.1016/0043-1354(80)90143-8 CrossRefGoogle Scholar
  27. Huang P, Li TG, Li AC, Yu XK, Hu NJ (2014) Distribution, enrichment and sources of heavy metals in surface sediments of the north Yellow Sea. Cont Shelf Res 73:1e13CrossRefGoogle Scholar
  28. Jung MC (2001) Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea. Appl Geochem 16(11-12):1369–1375.  https://doi.org/10.1016/S0883-2927(01)00040-3 CrossRefGoogle Scholar
  29. Kalender L, Uçar SC (2013) Assessment of metal contamination in sediments in the tributaries of the Euphrates River, using pollution indices and the determination of the pollution source, Turkey. J Geochemical Exploration 134:73–84.  https://doi.org/10.1016/j.gexplo.2013.08.005 CrossRefGoogle Scholar
  30. Kalvins M, Briede A, Rodinov V, Kokorite I, Parele E, Klavina I (2000) Heavy metals in rivers of Latvia. Sciences Total. Environment 262:175–183Google Scholar
  31. Locatelli C, Torsi G (2000) Determination of Se, As, Cu, Pb, Cd, Zn and Mn by anodic and cathodic stripping voltammetry in marine environmental matrices in the presence of reciprocal interference. Proposal of a new analytical procedure. Microchemistry J 65:293–303CrossRefGoogle Scholar
  32. Long ER, Mac Donald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges chemical concentration in marine and estuarine sediments. Environ Manag 19(1):81–97.  https://doi.org/10.1007/BF02472006 CrossRefGoogle Scholar
  33. Mac Donald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39(1):20–31.  https://doi.org/10.1007/s002440010075 CrossRefGoogle Scholar
  34. Martin JM, Whitfield M (1983) The significance of the river input of chemical elements to the ocean. In: Wong CS, Boyle E, Brul KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 265–296.  https://doi.org/10.1007/978-1-4757-6864-0_16 CrossRefGoogle Scholar
  35. Mashiatullah A, Chaudhar MZ, Ahmad N, Javed T, Ghaffar A (2012) Metal pollution and ecological risk assessment in marine sediments of Karachi coast, Pakistan. Environ Monit Assess 185(2):1555–1565.  https://doi.org/10.1007/s10661-012-2650-9 CrossRefGoogle Scholar
  36. Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of spain. Chemosphere 55(3):431–442.  https://doi.org/10.1016/j.chemosphere.2003.10.047 CrossRefGoogle Scholar
  37. Muhammad BG, Jaafar MS, Abdul Rahman A, Ingawa FA (2000) Determination of radioactive elements and heavy metals in sediments and soil from domestic water sources in northern peninsular Malaysia. Environ Monit Assess 184:5043–5049CrossRefGoogle Scholar
  38. Müller G (1981) The heavy metal pollution of the sediments of Neckars and its tributary: a stocktaking. Chemical Zeitung 105:157–164Google Scholar
  39. Nordstrom KF (1992) Estuarine beaches. Elsevier Applied Science, London and New YorkGoogle Scholar
  40. Omar MB, Mendiguchı’a C, Er-Raioui H, Marhraoui M, Lafraouil GK, Oulad-Abdellah M, Garcı’a-Vargas M, Moreno C (2015) Distribution of heavy metals in marine sediments of Tetouan coast (north of Morocco): natural and anthropogenic sources. Environ Earth Sci 74(5):4171–4185.  https://doi.org/10.1007/s12665-015-4494-4 CrossRefGoogle Scholar
  41. Ouakad M (1982) Etude sédimentologique et caractéres géochimiques des dépôts récents de la Garaet el Ichkeul (Tunisie septentrionale). Thèse de 3ème cycle. Université de Perpignan, Perpignan, p 166Google Scholar
  42. Ouakad M (2007) Genèse et évolution des milieux laguno-lacustres du nord-est de la Tunisie (Garaet Ichkeul, Lagunes de Bizerte er Ghar el Melh). Thèse Doct. Es. Sci. Géol., Univ. Tunis el Manar. pp 453Google Scholar
  43. Prange JA, Dennison WC (2000) Physiological responses of five sea grass species to trace metals. Mar Pollut Bull 41(7-12):327–336.  https://doi.org/10.1016/S0025-326X(00)00126-0 CrossRefGoogle Scholar
  44. Ruiz F, Abad M, Olías M, Galán E, González I, Aguilá E, Hamoumi N, Pulido I, Cantano M (2006) The present environmental scenario of the Nador lagoon (Morocco). Environ Res 102(2):215–229.  https://doi.org/10.1016/j.envres.2006.03.001 CrossRefGoogle Scholar
  45. Sakan SM, Dordević DS, Manojlović DD, Predrag PS (2009) Assessment of heavy metal pollutants accumulation in the Tisza river sediments. J Environ Manag 90(11):3382–3390.  https://doi.org/10.1016/j.jenvman.2009.05.013 CrossRefGoogle Scholar
  46. Selvaraj K, Mohan VR, Szefer P (2004) Evaluation of metal contamination in coastal sediments of the bay of Bengal, India: geochemical and statistical approaches. Mar Pollut Bull 49(3):174–185.  https://doi.org/10.1016/j.marpolbul.2004.02.006 CrossRefGoogle Scholar
  47. Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol Environ Saf 84:117–124.  https://doi.org/10.1016/j.ecoenv.2012.06.027 CrossRefGoogle Scholar
  48. Tang Z, Zhang L, Huang Q, Yang Y, Ni Z, Cheng J, Yang J, Wang Y, Chai M (2015) Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicology Environ Safety 122:343–351CrossRefGoogle Scholar
  49. Tomlinson D, Wilson J, Harris C, Jeffrey D (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresun 33(1–4):566–575CrossRefGoogle Scholar
  50. Touaylia S, Ghannem S, Toumi H, Bejaoui M, Garrido J (2016) Assessment of heavy metals status in northern Tunisia using contamination indices: case of the Ichkeul steams system. Int Res J Public Environ Health 3(9):209–217Google Scholar
  51. Uluturhan E (2010) Heavy metal concentrations in surface sediments from two regions (Saros and Gökova gulfs) of the eastern Aegean Sea. Environ Monit Assess 165(1–4):675–684.  https://doi.org/10.1007/s10661-009-0978-6 CrossRefGoogle Scholar
  52. UNESCO (2009a) Biosphere reserve information Tunisia, Ichkeul. UNESCO-MAB Biosphere Reserves Directory. Available at: http://www.unesco.org/mabdb/br/brdir/directory/biores.asp?code=TUN+03&mode=all
  53. UNESCO (2009b) List of biosphere reserves which are wholly or partially world heritage sites and Ramsar wetlands. UNESCO MAB biosphere reserves directory. Available at: http://www.unesco.org/mab/doc/brs/brs_ramsar_whc.pdf
  54. Valdés J, Vargas G, Sifeddine A, Ortlieb L, Guinez M (2005) Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23°S), northern Chile: geochemical and statistical approach. Mar Pollut Bull 50(12):1558–1568.  https://doi.org/10.1016/j.marpolbul.2005.06.024 CrossRefGoogle Scholar
  55. Vallejuelo SFOD, Arana G, Diego AD, Madariaga JM (2010) Risk assessment of trace elements in sediments: the case of the estuary of the Nerbioi-Ibaizabal River (Basque Country). J Hazard Mater 181(1–3):565–573.  https://doi.org/10.1016/j.jhazmat.2010.05.050 CrossRefGoogle Scholar
  56. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364.  https://doi.org/10.1016/j.jhazmat.2011.08.051 CrossRefGoogle Scholar
  57. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38.  https://doi.org/10.1097/00010694-193401000-00003 CrossRefGoogle Scholar
  58. Wenning RJ, Ingersoll CG (2002) Executive summary of the SETAC pellston workshop on use ofsediment quality guidelines and related tools for the assessment of contaminated sediments. Society of Environmental Toxicology and Chemistry (SETAC), PensacolaGoogle Scholar
  59. Wu CF, Zhang LM (2010) Heavy metal concentrations and their possible sources in paddy soils of a modern agricultural zone, southeastern China. Environ Earth Sci 60:45–56Google Scholar
  60. Xie Z, Jiang Y, Zhang H, Wang D, Qi S, Du Z, Zhang H (2016) Assessing heavy metal contamination and ecological risk in Poyang Lake area, China. Environ Earth Sci 75(7):549.  https://doi.org/10.1007/s12665-015-5240-7 CrossRefGoogle Scholar
  61. Yoshida M and RPP-SEPMCL2002 Shipboard Scientist Team (2002) Classification of spatial variation pattern for identifying pollution sources: a case study on sediment contamination in Bizerte lagoon, Tunisia 7th international symposium on spatial accuracy assessment in natural resources and environmental sciences. Edited by M. Caetano and M. PainhoGoogle Scholar
  62. Yu GB, Liu Y, Yu S, Wu SC, Leung AOW, Luo XS, Xu B, Li HB, Wong MH (2011) Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments. Chemosphere 85:1080–1087Google Scholar
  63. Zarei I, Pourkhabbaz A, Khuzestani RB (2014) An assessment of metal contamination risk in sediments of Hara biosphere reserve, southern Iran with a focus on application of pollution indicators. Environ Monit Assess 186(10):6047–6060.  https://doi.org/10.1007/s10661-014-3839-x CrossRefGoogle Scholar
  64. Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157:1533e1543Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Bochra Brik
    • 1
    • 2
  • Abdelwaheb Aydi
    • 1
    • 3
  • Chadia Riahi
    • 1
    • 2
  • Ali Sdiri
    • 4
  • Kamel Regaya
    • 1
    • 2
  1. 1.Faculty of Science of BizerteCarthage UniversityBizerteTunisia
  2. 2.Faculty of Letters, Arts and Humanities, Geomatic and Geosystems Research Unit UR 11E S411University of ManoubaTunisTunisia
  3. 3.Faculty Science of Bizerte, Department of Earth SciencesCarthage UniversityBizerteTunisia
  4. 4.National School of EngineersUniversity of SfaxSfaxTunisia

Personalised recommendations