Advertisement

Geochronology and geochemistry of Ediacaran volcanic rocks of the Tighardine ore deposit formation (western High Atlas, Morocco)

  • Salah Boukerrou
  • Herminio Nalini
  • Hugo Moreira
  • Lhou Maacha
  • Mohamed Zouhair
  • Mohamed Outhounjite
  • Said Ouirouane
  • Mohamed Hibti
  • Ahmed Touil
Original Paper

Abstract

The study performed on the host rocks of the Tighardine deposit allows proposing a new lithostratigraphic succession, mainly constituted of three volcanic and volcano–sedimentary units and dolomitic bed and lenses. Volcanic rocks consist mainly of basalt, andesite, and less common dacites. They are characterized by a FeO/MgO ratio range of 0.8–10.0, TiO2 contents ranging between 0.6 and 3.2 wt%, and high values of Zr/Y (7.1 to 9.9), Nb/Y (0.5 to 1.1), and Nb/La (0.7 to 1.1) ratios, providing good evidence of intracontinental tholeiitic character with a subalkaline affinity. They have no Nb anomaly and high Ti/Yb ratios (> 4000), suggesting their derivation from an enriched source and emplacement in an extensional continental setting. Fractional crystallization is the main differentiation mechanism of these rocks, and crustal contamination may have contributed to their final geochemical signature. U/Pb dating these volcanic rocks revealed ages of 603.5 ± 3.3 and 596.1 ± 3.3 Ma. These early Ediacaran ages chronologically correlate to the age of the Lower Ouarzazate Supergroup located in the Precambrian area of the Moroccan Anti-Atlas. The Tighardine formations underwent superimposed polyphase metamorphism. Mineralogical investigations show evidence of local intense thermal metamorphism and hydrothermalism evidenced by andalusite and cordierite in pelites; diopside, tremolite, and actinolite in dolomite; and by actinolite in volcanic rocks. Late brown biotite may overgrow early metamorphic minerals in all facies. Hydrothermal transformation is particularly confined in the crossings of N–S and N70 to E–W faults. The local thermal metamorphism and hydrothermalism result from a hypothetical granitic intrusion at depth. The early disseminated polymetallic mineralization (Cu–Pb–Zn) is confined in the Ediacaran volcanic and volcanosedimentary formation of Tighardine. This volcanic activity contributes to the genesis of the Tighardine ore deposit. The economic ore deposit is related to the recrystallization and brecciation of this early-disseminated polymetallic mineralization, during the Variscan event or later.

Keywords

High Atlas Tighardine deposit Morocco Ediacaran age Intracontinental basalt U–Pb dating 

Notes

Acknowledgements

This contribution reports part of a PhD project of S. Boukerrou sponsored by the CMG-MANAGEM through a cooperation program with Cadi Ayyad University (FSTG Marrakech). Geochronological dating was provided by the Federal University of OuroPreto (Minas Gerais State, Brazil).

We warmly thank J. Moutte from Saint-Etienne Mines school for having proofread this manuscript. We thank the Journal Editor and the reviewers J.P. Liégeois and P. Donato for their useful comments.

References

  1. ALAnsari A, Bajddi A, Zouhair M, Sow M, Soulaimani A (2009) Mise en évidence de minéralisations à Cu-Zn-Ag-Pb de type "Carbonate Replacement Deposits" et de minéralisations pyriteuses de type Skarns/ Porphyres en aval des Veines à barytine-Pb-Zn-Ag de Tighardine hôtes dans des dolomies cambriennes du Haut Atlas occidental (Maroc) : Implications métallogéniques et pratiques. Notes MémServ GéolMaroc 530:31–44Google Scholar
  2. Amenzou A, Badra L (1996) Les granites d'Azegour et de Brikiine (Maroc): implication génétique d'après la typologie des zircons. C R Acad Sci Paris 323:213–220Google Scholar
  3. Badra L, Pouclet A, Prost AE, Touray JC (1992) Mise en évidence d’une extension intraplaquetardi-panafricaine d’intérêt métallogénique dans le Haut-Atlas occidental (Maroc). C R Acad Sci Paris Paris 314:703–709Google Scholar
  4. Benziane F, Yazidi A, Saadane A, Yazidi M, EL Fahssi A, Stone BD, Walsh GJ, Blein O, Baudin T, Chèvremont P, Soulaimani A, Admou H, Gasquet P, Cocherie A, Egal E, Youbi N, Razin P, Bouabdelli M, Gombert P (2014) Geochronological constraints on the polycyclic magmatism in the BouAzzer-El Graara inlier (Central Anti-Atlas Morocco). JAfr Earth Sci 99(2):287–306Google Scholar
  5. Blein O, Baudin T, Soulaimani A, Cocherie A, Chèvremont P, Admou H, Ouanaimi H, Hafid A, Razin P, Bouabdelli M, Roger J (2014) New geochemical, geochronological and structural constraintson the Ediacaran evolution of the south Sirwa, Agadir-Mellouland Iguerda inliers, Anti-Atlas, Morocco. J Afr Earth Sci 98:47–71CrossRefGoogle Scholar
  6. Bouabdellah M, Leach DL, Grandia F, Cardellach E (2009) Genesis of the Assif El Mal Zn–Pb (Cu, Ag) vein deposit. An extension-related Mesozoic vein system in the High Atlas of Morocco. Structural, mineralogical, and geochemical evidence. Min Dep 44(6):689–704CrossRefGoogle Scholar
  7. Cabanis B, Lecolle M (1989) Le diagramme La/10-Y/15-Nb/8 : unoutil pour la discrimination des series volcaniques et la mise en evidence des processus de melande et/ou de contamination crustale. C R Acad Sci Paris 309(2):2023–2029Google Scholar
  8. Cheilletz A, LevresseG GD, Azizi-samir MR, Zyadi R, Archibald DA, Farrar E (2002) The giant Imiter silver deposit: Neoproterozoic epithermal mineralization in the Anti-Atlas, Morocco. Min Dep 37(8):772–781.  https://doi.org/10.1007/s00126-002-0317-0 CrossRefGoogle Scholar
  9. Corbett GJ, Leach TM (1998) Controls on hydrothermal alteration and mineralization. In: Southwest Pacific Rim Gold-CopperSystems: structure, alteration, and mineralization (G.J. Corbett and T.M. Leach, edit). Spec pub, 6, Soc Ec Geol,Tulsa, Oklahoma, USAGoogle Scholar
  10. Cornée JJ, Tayebi M, Havlicek V (1987) Découverte de Saccogonum cf. saccatum, brachiopode du Cambrien (supérieur?) dans le Haut Atlas occidental (Maroc hercynien). Conséquences stratigraphiques et structurales. Géobios 20:517–527CrossRefGoogle Scholar
  11. De Koning G (1957) Géologie des Ida ou Zal (Maroc), stratigraphie, pétrographie et tectonique de la partie SW du bloc occidental du massif ancien du Haut Atlas. Leidse Geologische Mededelingen Leiden 23:1–209Google Scholar
  12. Eddif A, Gasquet D, Hoepffner C, Ait Ayyad N (2000) Les intrusions de Wirgane (Haut-Atlas Occidental) : témoin d’un magmatisme hercynien syn à tardi-cinématique. J Afr Earth Sci 31:483–498CrossRefGoogle Scholar
  13. Eddif A, Gasquet D, Hoepffner C, Levresse G (2007) Age of the Wirganegranodiorite intrusions (Western High-Atlas, Morocco): New U-Pb constraints. J Afr Earth Sci 47(4-5):227–231.  https://doi.org/10.1016/j.jafrearsci.2007.02.003 CrossRefGoogle Scholar
  14. El Amrani EH (1987) Caractérisation pétrographique du massif de “roches vertes” de la région d’Azegour (Haut Atlas occidental). Bull Inst Sc Rabat 11:9–22Google Scholar
  15. El Archi A, EL Houicha M, Jouhari A, Bouabdelli M (2004) Is the Cambrian basin of the Western High Atlas (Morocco) related either to a subduction zone or a major shear zone? J Afr Earth Sci 39:311–318CrossRefGoogle Scholar
  16. El Khalile A, Touil A, Hibti M, Bilal E (2014) Metasomatic zoning, mineralizations and genesis of Cu, Zn and Mo Azegourskarns (Western High Atlas, Morocco). Carp Jour EarthEnv Sc 9(1):21–32Google Scholar
  17. Ennih N, Liégeois J-P (2008) The boundaries of the West African craton, with a special reference to the basement of the Moroccan metacratonic Anti-Atlas belt. In: Ennih N, Liégeois J-P (Eds.), The boundaries of the West African Craton. Geol Soc London, Spec Pub 297:1–17CrossRefGoogle Scholar
  18. Féraud J, Maliqi G, Meha V (2007) Famous mineral localities: The Trepča mine StariTrg, Kosovo. Min Rec 38:267–298Google Scholar
  19. Ferlito C, Nicotra E (2010) The dyke swarm of Mount Calanna (Etna, Italy): an example of the uppermost portion of a volcanic plumbing system. Bull Volcanol 72(10):1191–1207.  https://doi.org/10.1007/s00445-010-0398-z CrossRefGoogle Scholar
  20. Fodor RV, Vetter SK (1984) Rift zone magmatism: petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin. Contribution to Min Pet 88(4):307–321.  https://doi.org/10.1007/BF00376755 CrossRefGoogle Scholar
  21. Gasquet D, Levresse G, Cheilletz A, Azizi-samir MR, Mouttaqi A (2005) Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian-Cambrian transition. Prec Res 140(3-4):157–187.  https://doi.org/10.1016/j.precamres.2005.06.009 CrossRefGoogle Scholar
  22. Gasquet D, Ennih N, Liégeois J-P, Soulaimani A, Michard A(2008) The Pan-African Belt. In: Michard A, Saddiqi O, Chalouan A, Frizon de Lamotte D (Eds.), Continental evolution: the geology of MoroccoLect Notes Earth Sci, 116:33–64, DOI:  https://doi.org/10.1007/978-3-540-77076-3_2
  23. Hart WK, Woldegabriel G, Walter RC, Mertzman SA (1989) Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. Journal of Geop Rese 94(B6):7731–7748CrossRefGoogle Scholar
  24. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 21:47–69CrossRefGoogle Scholar
  25. Karaoui B, Breitkreuz C, Mahmoudi A, Youbi N (2014) Physical volcanology, geochemistry and basin evolution of the Ediacaran volcano-sedimentary succession in the Bas Draâ inlier (OuarzazateSupergroup, western Anti-Atlas, Morocco). J Afr Earth Sci 99:307–331.  https://doi.org/10.1016/j.jafrearsci.2014.06.022 CrossRefGoogle Scholar
  26. Labriki M (1996) Carte géologique d’Amismiz. Notes Mém Ser Géol Maroc 372, échelle 1/100.000Google Scholar
  27. Le Roex AP, Dick HJB, Reid AM, Frey FA, Erlank AJ, Hart SR (1985) Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume. Cont MinPet 90(4):367–380Google Scholar
  28. LeMaitre RW (2002) A classification of igneous rocks and glossaryof terms. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511535581 CrossRefGoogle Scholar
  29. Levresse G, Cheilletz A, Gasquet D, Reisberg L, Deloule E, Marty B, Kyser K (2004) Osmium, sulphur, and helium isotopic results from the giant Neoproterozoic epithermal Imiter silver deposit, Morocco: evidence for a mantle source. Chem Geol 207(1-2):59–79.  https://doi.org/10.1016/j.chemgeo.2004.02.004 CrossRefGoogle Scholar
  30. Ludwig KR (2003). User’s Manual for Isoplot/Ex, Version 3.0, Ageochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Spec Publ 4:73Google Scholar
  31. Mabkhout F, Bonin B, Ait Ayad N, Sirna C, Lagarde JL (1988) Les massifs granitiques alcalins du Permien marocain. Comptes rendus Académie Sciences Paris 307(2):163–168Google Scholar
  32. Morata D, Puga E, Demant A, Aguirre L (1997) Geochemistry and tectonic setting of the ophites from the external zone of Betic Cordilleras. EstGeol 53:107–120Google Scholar
  33. Myashiro A (1974) Volcanic rocks series in islands arcs and active continental margins. Am Jour Sc 27:321–355CrossRefGoogle Scholar
  34. Ouali H, Briand B, Bouchardon JL, EL Maataoui M (2000) Mise en évidence d’un volcanisme alcalin intraplaque d’âge Acadien dans la Meseta nord-occidentale (Maroc). C R Acad Sc Paris 330:611–616CrossRefGoogle Scholar
  35. Ouazzani H, Pouclet A, Badra L, Prost A (2001) Le volcanisme d’arc du massif ancien de l’ouest du Haut-Atlas occidental (Maroc), un témoin de la convergence de la branche occidentale de l’océan panafricain. BullSoc Géol France 172(5):587–602.  https://doi.org/10.2113/172.5.587 CrossRefGoogle Scholar
  36. Palinkaš AL, Borojević Šoštarić S, Palinkaš SS (2008) Metallogeny of the northwestern and central Dinarides and southern Tisia. Ore Geol Rrev 34(3):501–520.  https://doi.org/10.1016/j.oregeorev.2008.05.006 CrossRefGoogle Scholar
  37. Palinkaš SS, Šoštarić Borojević S, Bermanec V, Palinkaš LA, Prochaska W, Smajlović J (2009) Dickite and kaolinite in the Pb-Zn-Ag sulphide deposits of northern Kosovo (Trepča and Crnac). Clay Min 44(1):67–79.  https://doi.org/10.1180/claymin.2009.044.1.67 CrossRefGoogle Scholar
  38. Palinkaš SS, Palinkaš LA, Renac C, Spangenberg JE, Lüders V, Molnar F, Maliqi G (2013) Metallogenic model of the TrepčaPb-Zn-Ag Skarn Deposit, Kosovo: evidence from fluid inclusions, rare earth elements, and stable isotope data. Econ Geol 108(1):135162Google Scholar
  39. Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Edited by DA Wyman. Geol Ass Canada, short course. Notes 12:79–113Google Scholar
  40. Pearce JA, Norry JM (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Cont Min Petrol 69(1):33–47CrossRefGoogle Scholar
  41. Permingeat F (1957). Le gisement de molybdène, tungstène et cuivre d'Azegour. Notes Mem Serv Geol Maroc 141Google Scholar
  42. Pouclet A, Ouazzani H, Fekkak A (2008) The Cambrian volcano-sedimentary formations of the westernmost High Atlas (Morocco): their place in the geodynamic evolution of the west African Palaeo-Gondwana northern margin. Geol Soc, London, Spec Pub 297(1):303–327.  https://doi.org/10.1144/SP297.15 CrossRefGoogle Scholar
  43. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249(1-2):1–35.  https://doi.org/10.1016/j.chemgeo.2007.11.005 CrossRefGoogle Scholar
  44. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sc Letters 26:207–221CrossRefGoogle Scholar
  45. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for the mantle composition and processes. In: Magmatism in the ocean basins. Saunders AD and Norry MJ (Eds). Geol Soc London Spec Pub 42:313–345CrossRefGoogle Scholar
  46. Tãmaş CG (1997) Advances in ore deposits study—breccia pipe structures, fluid inclusions and microprobe analyses. Rapport DR/MGG/NT97/021, B.R.G.M., Orléans, 35Google Scholar
  47. Thomas RJ, Fekkak A, Ennih N, Errami E, Loughlin SC, Gresse PG, Chevallier LP, Liégeois JP (2004) A new lithostratigraphic framework for the Anti-Atlas Orogen, Morocco. J Afr Earth Sci 39:217–226CrossRefGoogle Scholar
  48. Thompson RN, Morrison MA, Hendry GL, Parry SJ(1984). An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Phil Tran Royal Soc London, A310:549-590Google Scholar
  49. Touil A, Hibti M(2015). Commentaire sur l’article “Le skarn Mo-W-Cu à grenat, wollastonite, pyroxène et vésuvianite d’Azegour (Haut-Atlas, Maroc)” de Berrada et al. (Bull. Soc. géol. France, 2015, t. 186, no 1, pp. 21-34). Bull Soc géol France, 186, 6:101–103Google Scholar
  50. Touil A, El Boukhari A, Bilal E, Moutte J (1999) Alkaline affinity of tholeiites in the western part of the Siroua Massif [central Anti-Atlas, Morrocco]: evidence of a Neoproterozoic extensional regime. J Afr Earth Sci 29(4):699–713.  https://doi.org/10.1016/S0899-5362(99)00125-6 CrossRefGoogle Scholar
  51. Touil A, Hafid A, Moutte J, El Boukhari A (2008) Subduction-related to within-plate magmatismgranitoids (central Anti-Atlas, Morocco): evolution from petrology and geochemistry of the Neoproterozoic Siroua. In: Ennih, N., Liégeois, J.-P. (Eds.), The boundaries of the West African craton. Geol Soc London, Spec Pub 297(1):265–283.  https://doi.org/10.1144/SP297.13 CrossRefGoogle Scholar
  52. Toummite A, Liégeois JP, Gasquet D, Bruguier O, Beraaouz EH, Ikenne M (2012) Field, geochemistry and Sr-Nd isotopes of the Pan-African granitoids from the Tifnoute Valley (Sirwa, Anti-Atlas, Morocco): a post-collisional event in a metacratonic setting. Min PetrolSpec Issue, Gondwana Collision, pp 1–25Google Scholar
  53. Van Achterbergh E, Ryan CG, Jackson SE, Griffin W (2001) Appendix III. Data reduction software for LAICP-MS. In: Sylvester P. (Ed.) Laser-ablation-ICP-MS in the earth sciences, principles and applications. Min Ass Canada, Short Course Series 29:239–243Google Scholar
  54. Walsh GJ, Benziane JN, Aleinikoff F, Harrison RW, Yazidi A, Burton WC, Quick JE, Saadane A (2012) Neoproterozoictectonic evolution of the Jebel Saghro and BouAzzer-El Graara inliers, eastern and central Anti-Atlas, Morocco. Prec Res 216:23–62CrossRefGoogle Scholar
  55. Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London 457Google Scholar
  56. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magmas series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Salah Boukerrou
    • 1
  • Herminio Nalini
    • 2
  • Hugo Moreira
    • 2
  • Lhou Maacha
    • 3
  • Mohamed Zouhair
    • 3
  • Mohamed Outhounjite
    • 3
  • Said Ouirouane
    • 3
  • Mohamed Hibti
    • 1
  • Ahmed Touil
    • 1
  1. 1.Laboratoire Georessources (Unite Associee au CNRST, URAC42)Faculte des Sciences and Techniques GuelizMarrakechMorocco
  2. 2.Laboratório de Geoquímica, Departamento de GeologiaUniversidade Federal de Ouro PretoOuro PretoBrazil
  3. 3.MANAGEMCasablancaMorocco

Personalised recommendations