Skip to main content
Log in

The External Tanger Unit (Intrarif sub-Domain, External Rifian Zones, Morocco): an interdisciplinary study

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The External Tanger Unit represents one of the most complete Cretaceous-Miocene successions in the central areas of the Internal Intrarif sub-Domain (External Rif Zones, Morocco). An interdisciplinary study has been carried out to propose a new characterization of this unit which would allow a better comprehension of the confused and complex relationships among different units of the same sub-domain. The results achieved can be summarized as follows: (1) redefinition of the stratigraphic (litho-, bio-, and chrono-) record and introduction of a new, informal lithostratigraphic terminology; (2) recognition of two main depositional sequences (lower-middle Eocene p.p. and lower Oligocene p.p.-lower Miocene p.p.) separated by extended gaps (latest Cretaceous-early Eocene p.p. and middle Eocene p.p.-early Oligocene p.p.); (3) reconstruction of the evolution of the sedimentary realm, and of the relationships between tectonics and sedimentation; and (4) comparison between the upper Cretaceous-Miocene stratigraphic record and tectonic events of the Intrarif, which is located in the western external portion of the Maghrebian Flysch Basin, and the equivalent sedimentary record of the eastern portion of this basin in the Tunisian Tell. More in general, our results allowed (i) a first reconstruction of the Cretaceous-Miocene main tectono-sedimentary events; (ii) a more detailed location of the sedimentary suite in the external African Margin in the context of a wider palaeogeographic framework; and (iii) the definition of the main stages of the geological evolution of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcalá FJ, Martín-Martín M, López-Galindo A (2001) Clay mineralogy of the Tertiary sediments in the Internal Subbetic of Málaga Province, S Spain: implications for geodynamic evolution. Clay Miner 36(4):615–620. https://doi.org/10.1180/0009855013640013

    Article  Google Scholar 

  • Alcalá FJ, López-Galindo A, Martín-Martín M (2013a) Clay mineralogy as a tool for integrated sequence stratigraphic and palaeogeographic reconstructions: Late Oligocene-Early Aquitanian Western Internal South Iberian Margin, Spain. Geol J 48(4):363–375. https://doi.org/10.1002/gj.2451

    Article  Google Scholar 

  • Alcalá FJ, Guerrera F, Martín-Martín M, Raffaelli G, Serrano F (2013b) Geodynamic implications derived from Numidian-like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S, Spain). Terra Nova, 25(2):119–129, DOI: https://doi.org/10.1111/ter.12014

  • Amorosi A (1995) Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sediment Geol 109:135–153

    Article  Google Scholar 

  • Amorosi A (1997) Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. J Sediment Res B65:419–425

    Google Scholar 

  • Asebriy L, de Luca P, Bourgois J, Chotin P (1987) Resédimentation d’âge sénonien dans le Rif central (Maroc): Conséquences sur les divisions paléogéographiques et structurales de la chaîne. Journal of African Earth Sciences, 6:917 p

  • Azdimousa A, Bourgois J, Poupeau G, Montigny R (1998) Histoire thermique du massif de Kétema (Maroc): sa place en Afrique du Nord et dans les Cordillères bétiques. C.R. Acad. Sci. Paris 326:847–853

    Google Scholar 

  • Azdimousa A, Jabaloy A, Asebriy L, Booth-Rea G, González-Lodeiro F, Bourgois J (2007) Lithostratigraphy and structure of the Temsamane Unit (Eastern External Rif, Morocco). Rev Soc Geol Esp 20(3–4):119–132

    Google Scholar 

  • Bargach K, Ruano P, Chabli A, Galindo-Zaldivar J, Chalouan A, Jabaloy A, Akil M, Ahmamou M, Sanz de Galdeano C, Benmakhlouf M (2004) Recent tectonic deformations and stresses in the frontal part of the Rif Cordillera and the Saïss Basin (Fes and Rabat regions, Morocco). Pure Appl Geophys 161(3):521–540. https://doi.org/10.1007/s00024-003-2461-6

    Article  Google Scholar 

  • Belayouni H, Guerrera F, Martín-Martín M, Serrano F (2012) Stratigraphic update of the Cenozoic Sub-Numidian formations of the Tunisian Tell (North Africa): Tectonic/sedimentary evolution and correlations along the Maghrebian Chain. J Afr Earth Sci 64:48–64. https://doi.org/10.1016/j.jafrearsci.2011.11.010

    Article  Google Scholar 

  • Belayouni H, Guerrera F, Martín-Martín M, Serrano F (2013) Paleogeographic and geodynamic Miocene evolution of the Tunisian Tell (Numidian and Post-Numidian Successions): bearing with the Maghrebian Chain. Int J Earth Sci (Geol Rundsch) 102(3):831–855. https://doi.org/10.1007/s00531-012-0824-x

    Article  Google Scholar 

  • Berggren WA, Pearson PN (2005) A revised tropical and subtropical Paleogene planktonic foraminiferal zonation. J Foraminifer Res 35(4):279–298. https://doi.org/10.2113/35.4.279

    Article  Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76(7):803–832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    Article  Google Scholar 

  • Blatt H, Tracy RJ (1996) Petrology: igneous, sedimentary and metamorphic, 2nd edn. W.H. Freeman, New York, pp 1–529

  • Blow WH (1969) Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In Proc. First. Int. Conf. Planktonic Microfossils, Geneva, 1967, 1, edited by P. Brönnimann and H.H. Renz, pp. 199-422, Leiden (E.J. Brill)

  • Bolle MP, Adatte T (2001) Palaeocene-early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Miner 36:249–261

  • Bonardi G, Compagnoni R, Del Moro A, Messina A, Perrone V, Macaione E (2008) Rb ⁄ Sr age of the Alpine metamorphic overprint in the Aspromonte Nappe (Calabrian-Peloritanian Composite Terrane, Southern Italy). Boll Soc Geol Ital 127:173–190

    Google Scholar 

  • Bouillin JP (1986) Le “basin maghrébin”: une ancienne limite entre l’Europe et l’Afrique à l’ouest des Alpes. Bull. Soc. géol. France, (8) 4:547–558

  • Bracène R, Frizon de Lamotte D (2002) Origin of intraplate deformation in the Atlas System of Western and Central Algeria: from Jurassic Rifting to Cenozoic-Quaternary inversion. Tectonophysics 357(1-4):207–226. https://doi.org/10.1016/S0040-1951(02)00369-4

    Article  Google Scholar 

  • Carminati E, Lustrino M, Doglioni C (2012) Geodynamic evolution of the central and western Mediterranean: tectonic vs igneous petrology constraints. Tectonophysics 579:173–192. https://doi.org/10.1016/j.tecto.2012.01.026

    Article  Google Scholar 

  • Chafetz HS, Reid A (2000) Syndepositional shallow-water precipitation of glauconitic minerals. Sediment Geol 136(1-2):29–42. https://doi.org/10.1016/S0037-0738(00)00082-8

    Article  Google Scholar 

  • Chalouan A, Michard A, Feinberg H, Montigny R, Saddiqi O (2001) The Rif mountains building (Morocco): a new tectonic scenario. Bull. Soc Géol Fr 172(5):603–616. https://doi.org/10.2113/172.5.603

    Article  Google Scholar 

  • Chalouan A, Michard A, El Kadiri KH, Frizon de Lamotte D, Soto JI, Saddiqi O (2008) Continental evolution: the geology of Morocco. Springer-Verlag Berlin Heidelberg. Lect Notes Earth Sci 116:203–302. https://doi.org/10.1007/978-3-540-77076-3_5

    Article  Google Scholar 

  • Chaouni A (1996) Apport des données Landsat MSS, Radar ERS1-SAR, modèles numériques de terrain à la compréhension de la cinématique des principales failles de la péninsule de Tanger depuis l’Oligcène supérieur jusqu’à l’Actuel (Rif Septentrional, Maroc). Thèse Univ. Mohamet V, Rabat, 295 p

    Google Scholar 

  • Ciszak R, Magné J, Peybernes B (1986) Interprétation du complexe chaotique « triasique » d’Oraine (Algérie occidentale) comme un olistostrome sénonien localement réinjecté dans les accidents alpins. Comptes Rendus de l’Académie des Sciences, Paris 402:357–362

    Google Scholar 

  • Croudace JW, Robinson ND (1983) A simple, rapid and precise smear method for the preparation of oriented clay mounts. Clay Miner 18(3):337–340. https://doi.org/10.1180/claymin.1983.018.3.11

    Article  Google Scholar 

  • Daoudi L, Deconinck JF, Witan O, Rey J (1995) Impact des variations du niveau marin sur les argiles: exemple du Crétacé inférieur du bassin d’Essaouira (Maroc). Comptes Rendus de l’Academie des Science, Paris 320:707–711

    Google Scholar 

  • de Capoa P, Di Staso A, Guerrera F, Perrone V, Tramontana M (2003) The extension of the Maghrebian Flysch Basin in the Apenninic Chain: paleogeographic and paleotectonic implications. Travaux Inst. Sci. Rabat. Géogr Phys 21:77–92

    Google Scholar 

  • Tejera de Leon J, Duée G (2003) Relationships between the Neogene foredeep basins of the Western external Riffian belt related to the Arbaoua-Jebha transform fault. Consequences for the interpretation of the evolution of the Riffian belt (Morocco). Trav. Inst. Sci. Rabat, sér. Géol. & Géogr. phys., 21:1–19

  • Dou Y, Yang S, Liu Z, Clift PD, Yu H, Berne S, Shi X (2010) Clay mineral evolution in the central Okinawa Trough since 28 ka: implications for sediment provenance and paleoenvironmental change. Palaeo, Palaeo. Palaeo 288(1-4):108–117. https://doi.org/10.1016/j.palaeo.2010.01.040

    Article  Google Scholar 

  • Durand Delga M, Didon J, Mediouni R, Wernli R (1985) Carte géologique du Rif, feuille de Tanger-Al Manzla, 1/50.000. Notes Mém. Serv. géol. Maroc, 294 p

  • El Kadiri KH, Hlila R, Sanz de Galdeano C, López-Garrido AC, Chalouan A, Serrano F, Bahmad A, Guerra-Merchán A, Liemlahi H (2006) Regional correlations across the Internides-Externides front (northwestern Rif Belt, Morocco) during thr Late Cretaceous-Early Burdigalian times: palaeogeographical and palaeotectonic implications. In: Moratti G & Chalouan A. (eds) Tectonics of the Western Mediterranean and North Africa. Geol. Soc, London, Special Pubbl. 262:193–215

  • El Mrihi A (1995) Structures alpines des zones externes et des nappes de flyschs à l’ouest de la chaîne du Haouz (Rif septentrional, maroc). Thèse Univ. Mohammed V, Rabat, 149 p

    Google Scholar 

  • Ernest WG (1963) Significance of phengite micas from low-grade schists. Am Mineral 48:1357–1373

    Google Scholar 

  • Eslinger E, Mayer L, Durst T, Hower J, Savin S (1973) A X-ray technique for distinguishing between detrital and secondary quartz in the finegrained fraction of sedimentary rocks. J Sediment Pet 43(2):540–543

    Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Hemphill’s, 1-182. Pau. S N P A 3:147–154

    Google Scholar 

  • Frizon de Lamotte D, Andrieux J, Guezou JC (1991) Cinématique deschevauchements néogènes dans l'Arc bético-rifain: Discussion sur les modèles géodynamiques. Bull. Soc Géol Fr 162(4):611–626. https://doi.org/10.2113/gssgfbull.162.4.611

    Article  Google Scholar 

  • Frizon de Lamotte D, Michard A, Saddiqi O (2006) Quelques développements recent sur la géodynamique du Maghreb. C R Geosci 338(1-2):1–10. https://doi.org/10.1016/j.crte.2005.11.006

    Article  Google Scholar 

  • Gazzi P, Zuffa GG, Gandolfi G, Paganelli L (1973) Provenienza e dispersione delle sabbie delle spiagge adriatiche fra le foci dell’Isonzo e del Foglia: inquadramento regionale. Mem Soc Geol Ital 12:1–37

    Google Scholar 

  • Guerrera F, Martín-Martín M (2014a) Geodynamic events reconstructed in the Betic, Maghrebian and Apennine chains (central-western Tethys). Bull. Soc. Géol Fr 185(5):329–341. https://doi.org/10.2113/gssgfbull.185.5.329

    Article  Google Scholar 

  • Guerrera F, Martín-Martín M (2014b) Paleogene-Aquitanian tectonic breakup in the eastern External Betic Zone (Alicante, SE Spain). Revista Sociedad Geológica de España (vol. spec.), 27/1:271–285

  • Guerrera F, Martín-Martín M, Perrone V, Tramontana M (2005) Tectono-sedimentary evolution of the southern branch of the Western Tethys (Maghrebian Flysch Basin and Lucanian Ocean). Terra Nova 17(4):358–367. https://doi.org/10.1111/j.1365-3121.2005.00621.x

    Article  Google Scholar 

  • Guerrera F, Estévez A, López-Arcos M, Martín-Martín M, Martín-Pérez JA, Serrano F (2006) Paleogene tectono-sedimentary evolution of the Alicante trough (external Betic zone, SE Spain) and its bearing in the timing of deformation of the sud-Iberian Margin. Geodinam. Acta Eur. J Geodyn 19(2):87–101. https://doi.org/10.3166/ga.19.87-101

    Article  Google Scholar 

  • Guerrera F, Martín-Algarra A, Martín-Martín M (2012) Tectono-sedimentary evolution of the “Numidian Formation” and Lateral Facies (southern branch of the western Tethys): constraints for central-western Mediterranean geodynamics. Terra Nova 24(1):34–41. https://doi.org/10.1111/j.1365-3121.2011.01034.x

    Article  Google Scholar 

  • Handy M, Schmid S, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth Sci Rev 202:121–158

    Article  Google Scholar 

  • Haq BU, Hardebol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235(4793):1156–1167. https://doi.org/10.1126/science.235.4793.1156

    Article  Google Scholar 

  • Hlila R (2005) Evolution tectono-sédimentaire tertiaire au front ouest du domaine d'Alboran (Ghomarides et Dorsale calcaire). Ph. D. thesis, Univ. de Tétouan, 351 p

  • Huggett JM, Gale AS (1997) Petrology and paleoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK. J Geol Soc Lond 154(5):897–912. https://doi.org/10.1144/gsjgs.154.5.0897

    Article  Google Scholar 

  • Jabaloy-Sánchez A, Azdimousa A, Guillermo Booth-Rea G, Asebriy L, Vázquez-Vílchez M, Martínez-Martínez JM, Janet Gabites J (2015) The structure of the Temsamane fold-and-thrust stack (eastern Rif, Morocco): evolution of a transpressional orogenic wedge. Tectonophysics 663:150–176. https://doi.org/10.1016/j.tecto.2015.02.003

    Article  Google Scholar 

  • Kelly JC, Web JA (1999) The genesis of glaucony in the Oligo-Miocene Torquay Group, southeastern Australia: petrographic and geochemical evidence. Sediment Geol 125(1-2):99–114. https://doi.org/10.1016/S0037-0738(98)00149-3

    Article  Google Scholar 

  • Kübler B (1968) Evaluation quantitative du metamorphisme par la cristallinité de l'illite. Etat des progrés realisés dans ces dernieres années Bulletin Centre de Recherches de Pau 2:385–397

    Google Scholar 

  • Kuhnt W, Obert D (1991) Evolution crétacée de la marge tellienne. Bull. Soc. Géol Fr 162:515–522

    Google Scholar 

  • Lanson B (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clay Clay Miner 45:32–146

    Article  Google Scholar 

  • Luterbacher HP, Ali JR, Brinkhuis H, Gradstein FM, Hooker J, Monechi S, Ogg JG, Powell J, Röhl U, Sanfilippo A, Schmitz B (2004) The Paleogene period. In: Gradstein F, Ogg J, Smith A (eds) A Geologic Time Scale 2004. Cambridge University Press, pp 384–408

  • Martín-Martín M (1996) El Terciario del Dominio Maláguide en Sierra Espuña (Cordillera Bética oriental, SE de España). Tesis Doctoral Universidad de Granada, Estratigrafía y Evolución Paleogeográfica, 297p

    Google Scholar 

  • Morel JL (1989) Etats de contrainte et cinématique de la chaîne rifaine (Maroc) du Tortonien à l'actuel. Geodin Acta 3:238–294

    Article  Google Scholar 

  • Odin GS, Fullagar PD (1988) Geological significance of the glaucony facies. In: Odin GS (ed) Green marine clay. Elsevier, Amsterdam, pp 295–332

    Google Scholar 

  • Patchineelam SM, de Figueiredo AG (2000) Preferential settling of smectite on the Amazon continental shelf. Geo-Mar Lett 20(1):37–42. https://doi.org/10.1007/s003670000035

  • Perrone V, Di Staso A, Perrotta S (2008) The evolution of the Western Adriatic margin and contiguous oceanic area: open problems and working hypotheses. Boll Soc Geol Ital 127:357–373

    Google Scholar 

  • Perrone V, Perrotta S, Marsaglia K, Di Staso A, Tiberi V (2014) The Oligocene ophiolite-derived breccias and sandstones of the Val Marecchia nappe: insights for paleogeogrphy and evolution of northern Apennines (Italy). Palaeo Palaeo. Palaeo 394:128–143. https://doi.org/10.1016/j.palaeo.2013.11.024

    Article  Google Scholar 

  • Plestch T (1997) Clay minerals in Cretaceous deep-water formations of the Rif and the Betic cordillera. Bulletin de la Société Géologique du Nord 26:1–106

    Google Scholar 

  • Ruffell AH, Price GD, Mutterlose J, Kessels K, Baraboshkin E, Gröcke DR (2002) Palaeoclimate indicators (clay minerals, calcareous nannofossils, stable isotopes) compared from two successions in the late Jurassic of the Volga Basin (SE Russia). Geol J 37(1):17–33. https://doi.org/10.1002/gj.903

    Article  Google Scholar 

  • Sanz de Galdeano C (2003) The westward displacement of the Betic-Rif internal zone during the end of the Oligocene-Miocene. Hypotheses for and against, discussions and associated features. Travaux Institut Scientifique, Rabat, sér. Géol 1 Géogr. Phys, 21:1–14

  • Schultz LG (1964) Quantitative interpretation of mineralogical composition from x-ray and chemical data for the Pierre Shale. U.S. Geological Survey Professional Paper, 391-C:31 p

  • Suter G (1980) Carte géologique du Rif, 1/500 000. Notes et Mém. Serv. géol. Maroc, 245a

  • Thiry M, Jacquin T (1993) Clay mineral distribution related to rift activity, sea-level change and palaeoceanography in the Cretaceous of the Atlantic Ocean. Clay Miner 28(1):61–84. https://doi.org/10.1180/claymin.1993.028.1.07

    Article  Google Scholar 

  • Vázquez M, Asebriy L, Azdimousa A, Jabaloy A, Booth-Rea G, Barbero L, Mellini M, González-Lodeiro F (2013) Evidence of extensional metamorphism associated to Cretaceous rifting of the North-Maghrebian passive margin: the Tanger-Ketama unit (external Rif, northern Morocco). Geol Acta 11(3):277–293

    Google Scholar 

  • Zaghloul MN, Di Staso A, Gigliuto LG, Maniscalco R, Puglisi D (2005) Stratigraphy and provenance of Lower and Middle Miocene strata within the External Tanger Unit (Intra-Rif sub-Domain, External Domain; Rif, Morocco): first evidence. Geol Carpath 56:517–530

    Google Scholar 

  • Zakir A, Chalouan A (2003) Modélisation tectonique des rampes frontales et latérales dans les réries Néogènes du Rif Externe Nord-Occidental entre El Ksar-El Kbir et Asilah (Maroc) : Rôle de l’accident de Jebha dans la structure de cette zone. Third Congress of Regional Commitee on Atlantic Neogene Stratigraphy «The Atlantic Neogene in the XXIth Century: State of the Art», Tetouan, Morocco, 19-25th September 2003

  • Zuffa GG (1980) Hybrid arenites: their composition and classification. J. Sedimentary. Petrology 50(1):21–29

    Google Scholar 

Download references

Acknowledgments

Research supported by: Research Project CGL2016-75679-P, Spanish Ministry of Education and Science; Research Groups and Projects of the Generalitat Valenciana, Alicante University (CTMA-IGA); Research Group RNM 146, Junta de Andalucía; grants from the University of Urbino Carlo Bo, responsible M. Tramontana. The authors are indebted with two anonymous referees because their suggestions improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Martín-Martín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maaté, S., Alcalá, F.J., Guerrera, F. et al. The External Tanger Unit (Intrarif sub-Domain, External Rifian Zones, Morocco): an interdisciplinary study. Arab J Geosci 10, 556 (2017). https://doi.org/10.1007/s12517-017-3347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3347-8

Keywords

Navigation