Skip to main content
Log in

Natural analogue approaches to prediction of long-term behaviour of Ca2UO5∙2-3H2O X-phase: case study from Tulul Al Hammam site, Jordan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Tulul Al Hammam area in central Jordan is an advantageous natural analogue site to study long-term U(VI) retention in ~ 1 Ma old U-bearing combustion metamorphic marbles with clinker-like mineralogy exposed to prolonged supergene alteration for at least ~ 100 kyr. The marbles contain abundant grains of high-temperature (ca. 800–850 °C) primary double Ca-U(VI) oxides (mainly Ca3UO6 and CaUO4), which are commonly replaced by hydrated calcium uranates with various impurities (Si, Fe, Al and F). A more hydrous natural analogue of X-phase (Ca2UO5·2-3H2O) occurs as a predominant secondary U compound after primary Ca-U(VI) oxides. The phase was studied by single-crystal XRD, SEM/EDX and electron microprobe (EPMA) analyses and Raman spectroscopy. It is a non-crystalline phase with a specific finger-like microtexture consisting of thin (no wider than 1–2 μm) lamellar particles. Its Raman spectrum shows a single strong band at 706–713 cm−1, sometimes coexisting with up to three weak diffuse bands (ν ~ 390, ~ 540 and 1355–1400 cm−1). The find of the natural X-phase (Ca2UO5·2-3H2O) is evidence of its long-term stability in a natural environment. It proves explicitly that the compound Ca2UO5·nH2O is a solubility-limiting phase in aged cements. The results have implications for geological disposal of radioactive wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abed AM, Arouri KR, Boreham CJ (2005) Source rock potential of the phosphorite-bituminous chalk-marl sequence in Jordan. Mar Pet Geol 22(3):413–425. https://doi.org/10.1016/j.marpetgeo.2004.12.004

    Article  Google Scholar 

  • Achternbosch M, Bräutigam K-R, Hartlieb N, Kupsch C, Richers U, Stemmermann P (2003) Heavy metals in cement and concrete resulting from the co-incineration of wastes in cement kilns with regard to the legitimacy of waste utilization, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6923. Umwelt Bundes Amt, Germany

  • Alexander WR (1992) A natural analogue study of the Maqarin, hyperalkaline groundwaters. I source term description and thermodynamic database testing. Editor. NAGRA Tech. Rep., Nagra, Wettingen

  • Alexander WR, Dayal R, Eagleson K, Eikenberg J, Hamilton E, Linklater CM, McKinley IG, Tweed CJ (1992) A natural analog of high pH cement pore waters from the Maqarin area of northern Jordan II: results of predictive geochemical calculations. J Geochem Explor 46(1):133–146. https://doi.org/10.1016/0375-6742(92)90104-G

    Article  Google Scholar 

  • Alexander WR, Smellie JAT (1998) Maqarin natural analogue project: ANDRA, CEA, NAGRA, NIREX and SKB synthesis report on phases I, II and III. Sci. Tech. Rep. NPB 98-08, Nagra, Wettingen, Switzerland

  • Allen GC, Griffiths AJ (1979) Vibrational spectroscopy of alkaline-earth metal uranate compounds. J Chem Soc Dalton Trans 2:315–319

    Article  Google Scholar 

  • Atkins M, Beckley AN, Glasser FP (1988) Influence of cement on the near field environment and its specific interactions with uranium and iodine. Radiochim Acta 44(45):255–261

    Google Scholar 

  • Atkins M, Beckley N, Carson S, Cowie J, Glasser FP, Kindness A, Macphee D, Pointer C, Rahman A, Jappy JG, Evans PA, McHugh G, Natingley NJ, Wilding C (1991) Medium-active waste form characterization: the performance of cement-based systems. Tack 3. Characterization of radioactive waste forms a series of final reports (1985-89), №1, European atomic energy community, report, contract number F1 IW/0025UK

  • Atkins M, Glasser FP (1992) Application of portland cement-based materials to radioactive waste immobilization. Waste Manag 12(2-3):105–131. https://doi.org/10.1016/0956-053X(92)90044-J

    Article  Google Scholar 

  • Bréchignac F, Oughton D, Mays C, Barnthouse L, Beasley JC, Bonisoli-Alquati A, Bradshaw C, Brown J, Dray S, Geras'kin S, Glenn T, Higley K, Ishida K, Kapustka L, Kautsky U, Kuhne W, Lynch M, Mappes T, Mihok S, Møller AP, Mothersill C, Mousseau TA, Otaki JM, Pryakhin E, Rhodes OE Jr, Salbu B, Strand P, Tsukada H (2016) Addressing ecological effects of radiation on populations and ecosystems to improve protection of the environment against radiation: agreed statements from a consensus symposium. J Environ Radioact 158-159:21–29. https://doi.org/10.1016/j.jenvrad.2016.03.021

    Article  Google Scholar 

  • Burakov BE, Anderson EB, Galkin BY, Pazukhin EM, Shabalev SI (1994) Study of Chernobyl “hot” particles and fuel containing masses: implications for reconstruction the initial phase of the accident. Radiochim Acta 65:199–202

    Article  Google Scholar 

  • Burakov BE, Anderson EB, Rovsha SI, Ushakov SV, Ewing RC, Lutze W, Weber WJ (1996) Synthesis of zircon for immobilization of actinides. Mat Res Soc Symp Proc Scientific Basis for Nuclear Waste Management XIX 412:33–39

    Article  Google Scholar 

  • Burakov BE, Anderson EB, Shabalev SI, Strykanova EE, Ushakov SV, Trotabas M, Blanc J-Y, Winter P, Duco J (1997) The behaviour of nuclear fuel in first days of the Chernobyl accident. Mat Res Soc Symp Proc Scientific Basis for Nuclear Waste Management XX 465:1297–1308

    Article  Google Scholar 

  • Burakov BE, Yagovkina MA, Zamoryanskaya MV, Petrova MA, Domracheva YV, Kolesnikova EV, Nikolaeva LD, Garbuzov VM, Kitsay AA, Zirlin VA (2008) Behavior of actinide host phases under self-irradiation: zircon, pyrochlore, monazite, and cubic zirconia doped with Pu-238. In: Krivovichev SV (ed) Minerals as advanced materials I. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77123-4_26

    Google Scholar 

  • Burakov BE, Ojovan MI, Lee WE (2010) Crystalline materials for actinide immobilization Materials for Engineering, vol 1. Imperial College Press, London

    Google Scholar 

  • Ding W, Johannes JA, Hanson BC, Burke IT (2016) Aqueous hydroxylation mediated synthesis of crystalline calcium uranate particles. J Alloys Compd 688:260–269. https://doi.org/10.1016/j.jallcom.2016.07.140

    Article  Google Scholar 

  • Duro L, Bruno J (2012) Natural analogues of nuclear waste repositories: studies and their implications for the development of radionuclide migration models. In: Poinssot C, Geckeis H (eds) Radionuclide behaviour in the natural environment: science, implications and lessons for the nuclear industry. Woodhead publishing limited, Cambridge. https://doi.org/10.1533/9780857097194.2.411

    Google Scholar 

  • Evrard O, Laceby JP, Lepage H, Onda Y, Ayrault S (2015) Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima nuclear power plant accident: a review. J Environ Radioact 148:92–110. https://doi.org/10.1016/j.jenvrad.2015.06.018

    Article  Google Scholar 

  • Fleurance S, Cuney M, Malartre M, Reyx J (2013) Origin of the extreme polymetallic enrichment (cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa group, central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219. https://doi.org/10.1016/j.palaeo.2012.10.020

    Article  Google Scholar 

  • Frost RL, Weier ML, Martens W (2005) Thermal decomposition of liebigite. A high resolution thermogravimetric and hot-stage Raman spectroscopic study. J Therm Anal Calorim 82(2):373–381. https://doi.org/10.1007/s10973-005-0905-1

    Article  Google Scholar 

  • Galuskin E, Armbruster T, Galuskina I, Lazic B, Winiarski A, Gazeev V, Dzieržanowski P, Zadov A, Pertsev N, Wrzalik R, Gurbanov A, Janeczek J (2011) Vorlanite (CaU6+)O4—a new mineral from the upper Chegem caldera, Kabardino-Balkaria, northern Caucasus, Russia. Am Mineral 96(1):188–196. https://doi.org/10.2138/am.2011.3610

    Article  Google Scholar 

  • Galuskin E, Galuskina I, Kusz J, Armbruster T, Marzec K, Dzierżanowski P, Murashko M (2014) Vapnikite Ca3UO6—a new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian autonomy, Israel. Mineral Mag 78(3):571–581. https://doi.org/10.1180/minmag.2014.078.3.07

    Article  Google Scholar 

  • Gaona X, Kulik DA, Macé N, Wieland E (2012) Aqueous–solid solution thermodynamic model of U(VI) uptake in C–S–H phases. Appl Geochem 27(1):81–95. https://doi.org/10.1016/j.apgeochem.2011.09.005

    Article  Google Scholar 

  • Gazis CA, Lanphere M, Taylor HP, Gurbanov AG (1995) 40Ar/39Ar and 18O/16O studies of the Chegem ash-flow caldera and the Eldjurta granite: cooling of two Pliocene igneous bodies in the greater Caucasus Mountains, Russia. Earth Planet Sci Lett 134(3-4):377–391. https://doi.org/10.1016/0012-821X(95)00141-X

    Article  Google Scholar 

  • Glasser FP, Rahman AA, Macphee D, Atkins M, Beckley N, Lachowski EE (1986) Immobilization of radioactive waste in cement-based matrices, report DOE RW 86.084. Aberdeen University, Scotland

    Google Scholar 

  • Golovich EC, Wellman DM, Serne RJ, Bovaird CC (2011) Summary of uranium solubility studies in concrete waste forms and vadose zone environments, U.S. Department of Energy, report, DE-AC05-76RL01830, PNNL-20726

  • Hadadin N, Qaqish M, Akawwi E, Bdour A (2010) Water shortage in Jordan-sustainable solutions. Desalination 250(1):197–202. https://doi.org/10.1016/j.desal.2009.01.026

    Article  Google Scholar 

  • Holc J, Golič L (1983) The synthesis and crystal structure of α-Ca3UO6. J Solid State Chem 48(3):396–400. https://doi.org/10.1016/0022-4596(83)90097-X

    Article  Google Scholar 

  • Humphries DW (1992) The preparation of thin sections of rocks, minerals and ceramics. Royal Microscopical Society, Oxford Science Publications, Microscopy Handbooks 24

  • Khoury HN, Al-Zoubi AS (2014) Origin and characteristics of Cr-smectite from Suweileh area, Jordan. Appl Clay Sci 90:43–52. https://doi.org/10.1016/j.clay.2014.01.004

    Article  Google Scholar 

  • Khoury H, Salameh E, Clark I (2014) Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Appl Geochem 43:49–65. https://doi.org/10.1016/j.apgeochem.2014.02.005

    Article  Google Scholar 

  • Khoury H, Sokol E, Clark I (2015) Calcium uranium oxides from Central Jordan: mineral assemblages, chemistry, and alteration products. Can Mineral 53(1):61–82. https://doi.org/10.3749/canmin.1400071

    Article  Google Scholar 

  • Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Kozmenko OA, Goryainov SV, Clark ID (2016a) Intermediate members of the lime-monteponite solid solutions (Ca1-xCdxO, x = 0.36-0.55): discovery in natural occurrence. Am Mineral 101(1):132–147. https://doi.org/10.2138/am-2016-5361

  • Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Nigmatulina EN, Goryainov SV, Belogub EV, Clark ID (2016b) Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Mineral Petrol 110(1):125–140. https://doi.org/10.1007/s00710-015-0413-3

    Article  Google Scholar 

  • Knyazev AV, Chernorukov NG, Dashkina ZS, Bulanov EN, Ladenkov IV (2011) Synthesis, structures, physicochemical properties, and crystal-chemical systematics of M2 IIAIIUO6 (MII = Pb, Ba, Sr; AII =Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) compounds. Russ J Inorg Chem 56(6):888–898. https://doi.org/10.1134/S003602361106009X

    Article  Google Scholar 

  • Krivovichev SV, Burns PC, Tananaev IG (2007) Structural chemistry of inorganic actinide compounds. Elsevier, Amsterdam

    Google Scholar 

  • Krupka KM, Serne RJ (1998) Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of lowlevel radioactive waste disposal facilities. Report NUREG/CR-6377. Pacific northwest National lab, Richland, WA, United States

  • Liegeois-Duyckaerts M (1977) Infrared and Raman spectrum of CaUO4: new data and interpretation. Spectrochim Acta A 6–7:709–713

    Article  Google Scholar 

  • Lisker S, Vaks A, Bar-Matthews M, Porat R, Frumkin A (2010) Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quat Sci Rev 29:1201–1211

    Article  Google Scholar 

  • Linklater CM, Albinsson Y, Alexander WR, Casas I, McKinley IG, Sellin P (1996) A natural analogue of high pH cement pore waters from the Maqarin area of northern Jordan: comparison of predicted and observed trace element chemistry of uranium and selenium. J Contam Hydrol 21(1-4):59–69. https://doi.org/10.1016/0169-7722(95)00033-X

    Article  Google Scholar 

  • McKinley IG, Alexander WR (1996) The uses of natural analogue input in repository performance assessment: an overview. CEC EUR report EN16761, Luxembourg

  • Miller WM, Alexander WR, Chapman NA, McKinley IG, Smellie JAT (2000) Geological disposal of radioactive wastes and natural analogues. Waste management series, vol. 2, Pergamon, Amsterdam, The Netherlands

  • Model S506 Interactive Peak Fit (2002) User’s manual. Canberra Industries Inc, Canberra

    Google Scholar 

  • Morgan GB, London D (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. Am Mineral 90(7):1131–1138. https://doi.org/10.2138/am.2005.1769

    Article  Google Scholar 

  • Moroni LP, Glasser FP (1995) Reactions between cement components and U(VI) oxide. Waste Manag 15(3):243–254. https://doi.org/10.1016/0956-053X(95)00022-R

    Article  Google Scholar 

  • Nuclear Wastes: Technologies for separations and transmutation (1996) National Research Council, division on earth and life studies, commission on geosciences, environment and resources, committee on separations technology and transmutation systems. National Academies Press, Washington, DC

    Google Scholar 

  • Read CM, Bugaris DE, zur Loye H-C (2013) Single crystal growth and structural characterization of four complex uranium oxides: CaUO4, β-Ca3UO6, K4CaU3O12, and K4SrU3O12. Solid State Sci 17:40–45. https://doi.org/10.1016/j.solidstatesciences.2012.12.013

    Article  Google Scholar 

  • Sali SK, Sampath S, Venugopal V (2000) Thermal studies on alkaline earth uranates. J Nucl Mater 277(1):106–112. https://doi.org/10.1016/S0022-3115(99)00145-2

    Article  Google Scholar 

  • Schubert-Bischoff P, Lutze W, Burakov BE (1997) Properties and genesis of hot particles from the Chernobyl reactor accident. Mat Res Soc Symp Proc Scientific Basis for Nuclear Waste Management XX 465:1319–1325

    Article  Google Scholar 

  • Sokol EV, Kokh SN, Khoury HN, Seryotkin YV, Goryainov SV (2016) Long-term immobilization of Cd2+ at the Tulul Al Hammam natural analogue site, central Jordan. Appl Geochem 70:43–60. https://doi.org/10.1016/j.apgeochem.2016.05.002

    Article  Google Scholar 

  • Sokol EV, Kozmenko OA, Khoury HN, Kokh SN, Novikova SA, Nefedov AA, Sokol IA, Zaikin P (2017) Calcareous sediments of the Muwaqqar chalk marl formation, Jordan: mineralogical and geochemical evidences for Zn and Cd enrichment. Gondwana Res 46:204–226. https://doi.org/10.1016/j.gr.2017.03.008

    Article  Google Scholar 

  • Techer I, Khoury H, Salameh E, Rassineux F, Claude C, Clauer N, Pagel M, Lancelot J, Hamelin B, Jacquot E (2006) Propagation of high-alkaline fluids in an argillaceous formation: case study of the Khushaym Matruk natural analog (Central Jordan). J Geochem Explor 90(1-2):53–67. https://doi.org/10.1016/j.gexplo.2005.09.004

    Article  Google Scholar 

  • Tits J, Geipel G, Macé N, Eilzer M, Wieland E (2011) Determination of uranium(IV) sorbed species in calcium silicate hydrate. A laser-induced luminescence spectroscopy and batch sorption study. J Colloid Interface Sci 359(1):248–256. https://doi.org/10.1016/j.jcis.2011.03.046

    Article  Google Scholar 

  • The Powder Diffraction File PDF-4 + (2006) International Centre for Diffraction Data (ICDD), Release

  • Vaks A, Bar-Matthews M, Matthews A, Ayalon A, Frumkin A (2010) Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel. Quat Sci Rev 29(19-20):2647–2662. https://doi.org/10.1016/j.quascirev.2010.06.014

    Article  Google Scholar 

Download references

Acknowledgments

The manuscript benefited much from the thoughtful review and valuable comments by Dr. Erica Bittarello and anonymous reviewer, as well as the helpful suggestions of Professor Abdullah M. Al-Amri, Editor-in-Chief of Arabian Journal of Geosciences. We greatly appreciate the assistance of Drs. N. Karmanov, E. Nigmatulina and M. Khlestov (Analytical Center for Multi-Elemental and Isotope Research, Novosibirsk) during the analytical work. T. Perepelova (IGM, Novosibirsk) is thanked for the helpful advice. The study was performed in accordance with the state assignment project No. 0330-2016-0004 as well as the Memorandum of Understanding on Academic Cooperation between the University of Jordan (Amman) and Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences (Novosibirsk).

Funding

The Russian contribution was supported by grant 15-05-00760 from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.V. Sokol.

Electronic supplementary material

ESM 1

(DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokol, E., Kokh, S., Khoury, H. et al. Natural analogue approaches to prediction of long-term behaviour of Ca2UO5∙2-3H2O X-phase: case study from Tulul Al Hammam site, Jordan. Arab J Geosci 10, 512 (2017). https://doi.org/10.1007/s12517-017-3305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3305-5

Keywords

Navigation