Skip to main content
Log in

Subsurface geophysics applied to archaeological investigation of Thabudeos Roman fortress (Biskra, Algeria)

  • ArabGU2016
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Tahouda, former Roman Thabudeos, is situated 400 km south of Algiers (Algeria). It is one of the fortresses belonging to Roman south defense line in North Africa. This region is archaeologically very poorly known except for surface remains. The geophysical survey formed part of a wider research project designed to record and assess the landscape context of the longest Roman defense line in North Africa. We present the geophysical mapping and imaging using electric resistivity tomography and electromagnetics to help in investigating the subsurface properties of the region. Data were obtained using: (1) Saris resistance meter with up to 25 electrodes spaced at 2 m intervals and lines up to 50 m long. A total of 11 lines was obtained. (2) Geonics EM31, in two dipole configuration modes with 16 lines up to 100 m sampled every meter. These methods prove to be very powerful tools to give insight and locate the anthropologic remains from the surface to a depth of 6 m and outline their geometry. The results obtained by the two methods are consistent above the main remains like walls and rooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Astin T, Eckardt H, Hay S (2007) Resistivity imaging survey of the roman barrows at Bartlow, Cambridgeshire, UK. Archaeol Prospect 14(1):24–37. https://doi.org/10.1002/arp.287

    Article  Google Scholar 

  • Atkinson R J C (1952) Méthodes électriques de prospection en archéologie. La découverte du passé, Lamining A, Ed Picard Paris 59–70

  • Ayadi A, Laouici D, Idjeraoui F (1992) Étude du site archéologique romain de Tipasa par la méthode électrique. Revue Archéométrie 16:13–19. doi : https://doi.org/10.3406/arsci

  • Babelon E, Cagnat R, Reinach S (1893) Atlas archéologique de la Tunisie. E Leroux, Paris

    Google Scholar 

  • Baker HA, Djeddi M (1999) The use of horizontal derivatives in interpreting quantitatively electrical resistivity data. Extended Abstract, 61st EAGE Meeting, Helsinki, Finland

  • Baradez JL (1949) Fossatum Africae : recherches aériennes sur l'organisation des confins sahariens à l'époque romaine. Arts et métiers graphiques

  • Berge MA, Drahor MG (2011) Electrical resistivity tomography investigations of multilayered archaeological settlements: part II—a case from old Smyrna Höyük, Turkey. Archaeol Prospect 18:291–302

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity & magnetic applications. Cambridge University Press, New York

    Book  Google Scholar 

  • Bracewell RN (1965) The Fourier transform and its applications. McGraw Hill, London 444 pp

    Google Scholar 

  • Briggs IC (1974) Machine contouring using minimum curvature. Geophysics 39(1):39–48

    Article  Google Scholar 

  • Büyüksarac A, Bilim F, Ates A, Bektas Ö (2006) Investigation of magnetic surveying data of buried grave jars in Harmanoren Necropolis (Turkey) using linear transformations and analytic signal. J Archaeol Sci 33:910–920

    Article  Google Scholar 

  • Caillemier R, Chevallier R (1959) Atlas des centuriations romaines de Tunisie. Institut Géographique National, Paris

    Google Scholar 

  • Casana J, Herrmann JT, Fogel A (2008) Deep subsurface geophysical prospection at Tell Qarqur, Syria. Archaeol Prospect 15:207–225. https://doi.org/10.1002/arp.335

    Article  Google Scholar 

  • Chianese D, Lapenna V, Salvia SDI, Perrone A, Rizzo E (2010) Joint geophysical measurements to investigate the Rossano of Vaglio archaeological site Basilicata Region, southern Italy. J Geochael Sci 37:2237–2244

    Google Scholar 

  • Cocchi L, Stefanelli P, Carmisciano C, Caratori TF, Taramaschi L, Cipriani S (2012) Marine archaeogeophysical prospection of Roman Salapia settlement (Puglia, Italy): detecting ancient harbour remains. Archaeol Prospect 19:89–101

    Article  Google Scholar 

  • De Domenico D, Giannino F, Leucci G, Bottari C (2006) Integrated geophysical surveys at the archaeological site of Tindari Sicily, Italy. J Archaeol Sci 33:961–970

    Article  Google Scholar 

  • Djeddi M, Baker HA, Tabbagh A (1998) Interpretation of VLF-EM anomalies of 3D structures by using linear filtering techniques. Ann Geofis 41:151–163. https://doi.org/10.1111/j.1365-246X.1994.tb02122.x

    Google Scholar 

  • Drahor MG (2006) Integrated geophysical studies in the upper part of Sardis archaeological site, Turkey. J Appl Geophys 59:205–223

    Article  Google Scholar 

  • Drahor MG, Göktürkler G, Berge MA, Kurtulmus O (2005). Resistivity inversion method in archaeological prospection and its importance. Proceedings, 6th International Conference on Archaeological Prospection, September, Rome, 112–115

  • Drahor MG, Kurtulmus TO, Berge MA, Hartmann M, Speidel MA (2008) Magnetic imaging and electrical resistivity tomography studies in a Roman military installation found in Satala archaeological site, northeastern Anatolia, Turkey. J Archaeol Sci 35:259–271

    Article  Google Scholar 

  • Dyson SL (1982) Archaeological survey in the Mediterranean Basin: a review of recent research. Soc Am Archaeol 47:87–98. https://doi.org/10.2307/280054

    Google Scholar 

  • Ekinci YL, Mehmet AK, Başaran C, Kasapoğlu H, Demirci A, Durgut C (2012) Geophysical imaging survey in the south necropolis at the ancient city of Parion (Kemer-Biga), Northwestern Anatolia, Turkey: preliminary results. Mediterr Archaeol Archaeom 12(2):145–157

    Google Scholar 

  • Ekinci YL, Ertekin C, Yiğitbas E (2013) On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: synthetic simulations and a case study from the Aegean graben system, western Anatolia, Turkey. J Geophys Eng 10:035005

    Article  Google Scholar 

  • Ellis RG, Oldenburg DW (1994) Applied geophysical inversion. Geophys J Int 116:5–11

    Article  Google Scholar 

  • Fraser DC (1969) Fraser contouring of VLF-EM data. Geophysics 34:958–967

    Article  Google Scholar 

  • Gaffney CF, Gater JA, Linford P, Gaffney VL, White R (2000) Large scale systematic fluxgate gradiometry at the Roman city of Wroxeter. Archaeol Prospect 7:81–99

    Article  Google Scholar 

  • Gerard-Little PA, Rogersb MB, Jordana KA (2012) Understanding the built environment at the Seneca Iroquois White Springs Site using large-scale, multi-instrument archaeogeophysical surveys. J Archaeol Sci 39:2042–2048. https://doi.org/10.1016/j.jas.2012.03.011

    Article  Google Scholar 

  • Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modelling in areas of complex geology. J Appl Geophys 29:211–226

    Article  Google Scholar 

  • Griffiths DH, Barker RD (1994) Electrical imaging in archaeology. J Archaeol Sci 21:153–158. https://doi.org/10.1006/jasc.1994.1017

    Article  Google Scholar 

  • Groot-Hedlin C, Constable S (1990) Occam's inversion to generate smooth, two dimensional models from magnetotelluric data. J Geophys 55(12):1613–1624

    Article  Google Scholar 

  • Gsell S (1911) Atlas archéologique de l'Algérie. Fontemoing, Paris

    Google Scholar 

  • Hadji YR (2005) Revue scientifique annuelle d'archéologie et du patrimoine publiée par l'institut d'archéologie université Alger 2

  • Hadji Y R (2008) Revue scientifique annuelle d'archéologie et du patrimoine publiée par l'institut d'archéologie université Alger 2

  • Haouchine A (2010) Hydrogéologie en zone semi aride et aride région de Biskra (Algérie). Thèse Doct d’état option Hydrogéologie. Univ. Houari Boumédiène Alger 155 p

  • Jordanova N, Petrovsky E, Kovacheva M, Jordanova D (2001) Factors determining magnetic enhancement of burnt clay from archaeological sites. J Archaeol Sci 28:1137–1148. https://doi.org/10.1006/jasc.2000.0645

    Article  Google Scholar 

  • Keating P, Sailhac P (2004) Use of the analytic signal to identify magnetic anomalies due to kimberlite pipes. Geophysics 69(1):180–190. https://doi.org/10.1190/1.1649386

    Article  Google Scholar 

  • Laffite R (1939) Etude Géologique de l’Aurès. Bulletin du service géologique de la carte de l’Algérie. 2è série, Stratigraphie- Descriptions régionales, carte n° 15, Alger. 484

  • Legendre M (1957) Note sur la cadastration romaine en Tunisie. Cahiers Tunisiens 5:135–166

    Google Scholar 

  • Leopold M, Plöckl T, Forstenaicher G, Völkel J (2010) Integrating pedological and geophysical methods to enhance the informative value of an archaeological prospection—the example of a Roman villa rustica near Regensburg, Germany. J Archaeol Sci 37(7:1731–1741. https://doi.org/10.1016/j.jas.2010.01.033

    Article  Google Scholar 

  • Leucci G, Grecob F, De Giorgia L, Mauceric R (2007) Three-dimensional image of seismic refraction tomography and electrical resistivity tomography survey in the castle of Occhiolà (Sicily, Italy) J Archaeol Sci 34:233–242. https://doi.org/10.1016/j.jas.2006.04.010

  • Li Y, Oldenburg DW (1994) Inversion of 3-D DC resistivity data using an approximate inverse mapping. Geophys J Int 116(3):527–537

    Article  Google Scholar 

  • Loke MH (2011) Tutorial: 2-D and 3-D electrical imaging surveys. Revision 30th December 150 p. http://www.geoelectrical.com

  • Loke MH, Barker RD (1996a) Practical techniques for 3D resistivity surveys and data inversion. Geophys Prospect 44:499–523. https://doi.org/10.1111/j.1365-2478.1996.tb00162.x

    Article  Google Scholar 

  • Loke MH, Barker RD (1996b) Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Loke MH, Chambers JE, Rucker DF, Kuras O, WilkinsonP B (2013a) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156

    Article  Google Scholar 

  • Loke M H, Frankcombe K, Rucker D F, (2013b). The inversion of data from complex 3-D resistivity and I.P. surveys. 23rd International Geophysical Conference and Exhibition, Melbourne, Australia, 79:11–14

  • Marescot L, Loke MH, Chapellier D, Delaloye R, Lambiel C, Reynard E (2008) Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surf Geophys 1(IF 1.123):57–68

    Google Scholar 

  • McNeil JD, (1980) Applications of transient electromagnetic technics. Technical Note TN-7, Geonics Ltd

  • Miller HG, Singh V (1994) Potential field tilt—a new concept for location of potential field sources. J Appl Geophys 32(2–3):213–217

    Article  Google Scholar 

  • Nabighian MN (1984) Towards a three-dimensional interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49:780–786

    Article  Google Scholar 

  • Nuzzo L, Leucci G, Negri S (2009) GPR, ERT and magnetic investigations inside the Martyrium of St Philip, Hierapolis, Turkey. Archaeol Prospect 16:177–192. https://doi.org/10.1002/arp.3

    Article  Google Scholar 

  • Oldenburg DW, Li Y (1999) Estimating depth of investigation in dc resistivity and IP surveys. J Geophys 64:403–416

    Article  Google Scholar 

  • Papadopoulos NG, Tsourlos P, Tsokas GN, Sarris A (2006) Two-dimensional and three-dimensional resistivity imaging in archaeological site investigation. Archaeol Prospect 13:163–181

    Article  Google Scholar 

  • Papadopoulos NG, Yi MJ, Kim JH, Tsourlos P, Tsokas GN (2010) Geophysical investigation of tumuli by means of surface 3D electrical resistivity tomography. J Appl Geophys 70:192–205

    Article  Google Scholar 

  • Quesnel Y, Jrad A, Mocci F, Gattacceca J, Mathé PE, Parisot JC, Hermitte D, Dumas V, Dussouillez P, Walsh K, Miramont C, Bonnet S, Uehara M (2011) Geophysical signatures of a roman and early medieval necropolis. Archaeol Prospect 18:105–115. https://doi.org/10.1002/arp.411

    Article  Google Scholar 

  • Roest WR, Verhoef J, Pilkington M (1992) Magnetic interpretation using the 3-D analytic signal. Geophysics 57:116–125

    Article  Google Scholar 

  • Salem A, Williams S, Fairhead JD, Ravat D, Smith R (2007) Tilt-depth method: a simple depth estimation method using first-order magnetic derivatives. Lead Edge 26(12):1502–1505

    Article  Google Scholar 

  • Sasaki Y (1994) 3-D resistivity inversion using the finite-element method. Geophysics 59:1839–1848

    Article  Google Scholar 

  • Sasaki Y, Yoneda Y, Matsuo K (1992) Resistivity imaging of controlled-source audio frequency magnetotelluric data. Geophysics 57:952–955

    Article  Google Scholar 

  • Saumagne C (1929) Les vestiges d'une centuriation romaine à l'est d'El-Djem. Comptes rendus des séances de l'Académie des Inscriptions et Belles-Lettres 73(4):307–313. https://doi.org/10.3406/crai.1929.75808

    Article  Google Scholar 

  • Shaw BD (1980) The history of the African provinces of the Roman empire. J Florilegium Archaeol Knowl 2:28–60

    Google Scholar 

  • Soyer J (1973) Les cadastres anciens de la region de Saint-Donat (Algerie), Les centuriations romaines en Algerie orientale Antiquites africaines 7:275–292 Les centuriations de Provence 1 Revue archeologique de Narbonne 6:198–232 10:107–180

  • Touchard JL (1901) Notes sur les fouilles faites a Tahouda. RSAC 35:151–155

    Google Scholar 

  • Tripp AC, Hohmann GW, Swift CM Jr (1984) Two-dimensional resistivity inversion. Geophysics 49(10):1708–1717. https://doi.org/10.1190/1.1441578

    Article  Google Scholar 

  • Trousset P (1977) Nouvelles observations sur la centuriation romaine à l'est d'El Jem. Antiq Afr 11:175–207. https://doi.org/10.3406/antaf.1977.994

    Article  Google Scholar 

  • Vafidis A, Economou N, Ganiatsos Y, Manakou M, Poulioudis G, Sourlas G, Vrontaki E, Sarris A, Guy M, Kalpaxis T (2005) Integrated geophysical studies at ancient Itanos (Greece). J Archaeol Sci 32(7):1023–1036

    Article  Google Scholar 

  • Wolke R, Schwetlick H (1988) Iteratively re-weighted least squares algorithms, convergence analysis, and numerical comparisons. SIAM J Sci Stat Comput 9:907–921

    Article  Google Scholar 

Web reference

  • Google Earth south region Biskra Tahouda 34° 48′ 06.10″ N and 5° 53′ 41.19″. http://www.earth.google.com. Accessed 24 Dec 2012

Download references

Acknowledgements

The authors are indebted to L. Belkhodja for her fruitful geological discussion and help. Warm thanks are extended to the two anonymous reviewers for their comments and remarks which helped greatly in improving the manuscript. We also acknowledge the associate editors and the editor handling this special issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira Khouas.

Additional information

This article is part of the Topical Collection on Current Advances in Geology of North Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khouas, A., Hamoudi, M., Khaldaoui, F. et al. Subsurface geophysics applied to archaeological investigation of Thabudeos Roman fortress (Biskra, Algeria). Arab J Geosci 10, 522 (2017). https://doi.org/10.1007/s12517-017-3260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3260-1

Keywords

Navigation