Skip to main content
Log in

Paleoproterozoic (ca. 1.7 Ga) magmatism in Chifeng, Inner Mongolia: implications for the tectonic evolution of the Trans-North China Orogen

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Meilin porphyritic biotite granite is located along the northern margin of the North China Craton and the northern central orogenic belt. The Meilin granite is complex but is dominated by a porphyritic biotite granite. Isotopic dating using zircon U-Pb LA-ICP-MS analyses indicates that the porphyritic biotite granite was emplaced at 1715.6 ± 9.6 Ma during the Late Paleoproterozoic, rather than during the Permian as previously thought. The Meilin granite is an A-type, and all samples from this granite are characterized by relatively high contents of silica (SiO2 = 69.86–71.70%), alkalis ((Na2O + K2O) = 8.69–9.40%), alumina (Al2O3 = 13.71–14.59%), high ratios of FeOt/MgO, low contents of calcium (CaO = 0.26–0.39%), and a negative Eu anomaly (Eu = 0.47–0.57). Additionally, all samples display strong enrichment in Th, K, La, Ce, and P and depletion in U, Ti, Ta, and Nb. These characteristics indicate that the granite formed in a rift environment, where rifting caused mantle decompression and the formation of basic magma. Underplating of the basic magma provided a heat source, leading to the partial melting of the lower crust. Sr isotopes of the Meilin porphyritic biotite granite suggest that the magma source was the remelting of the metamorphic basement. The granite was therefore emplaced in a non-orogenic extensional tectonic setting, which may have been related to the initial breakup of the Columbia supercontinent during the Late Paleoproterozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  • Bai J, Huang XG, Dai FY, Wu CH (1996) The Precambrian crustal evolution of China, 2nd edn. Geological Publishing House, Beijing ( in Chinese with English abstract)

    Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97(1–2):1–29

    Article  Google Scholar 

  • Chen PR, Zhou XM, Zhang WL, Li HM, Fan CF, Sun T, Chen WF, Zhang M (2004) Genesis and significance of Yanshan early syenite granite complex in eastern Nanling section. Sci China Ser D Earth Sci 34(6):493–503

  • Clemens JD, Holloway JR, White AJR (1986) Origin of A-type granites: experimental constraints. Am Mineral 71(3):317–324

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A type granites with particular reference to southeastern Australia. Contrb Mineral Petrol 80(2):189–200

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM and Hoskin PWO (eds) Zircon: reviews in mineralogy and geochemistry, 53:469–500

  • Creaser RA, Price RC, Wormald RJ (1991) A -type granites revisited: assessment of a residual - source model. Geology 19(11):163–166

    Article  Google Scholar 

  • Creaser RA, Price RC, Wormald RJ (2013) A_type granites revisitd: assessment of a residual_source model. Geology 19(2):163–166

    Article  Google Scholar 

  • Deng JF, Wu ZX, Zhao GC, Zhao HL, Luo ZH, Mo XX (1999) Precambrian granitic rocks, continental crustal evolution and craton formation of the North China platform. Acta Petrol Sin 15(2):190–198

    Google Scholar 

  • Diwu CR, Sun Y, Zhao Y, Lai SC (2014) Early paleoproterozoic (2.45–2.20 Ga) magmatic activity during the period of global magmatic shutdown: implications for the crustal evolution of the southern North China Craton. Precambrian Res 255(2):627–640

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20(7):641

    Article  Google Scholar 

  • Feng YG, Liu SW, Lu YJ, Liu XM (2009) Petrogenesis of the late paleozoic diorites-granitoids in Fengshan area, Northern Hebei Province: constraints from petrochemistry, Zircon U-Pb Chronology and Hf Isotope. Acta Sci Univ Pekin 45(1):59–70 (in Chinese with English abstract)

    Google Scholar 

  • Frost CD, Frost BR (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology 25:647–650

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Frost CD, Ramo OT, DallAgnol R (2007) IGCO project 510 - a -type granites and related rocks through time. Lithos (Preface) 97(1–2):vii–xiii

    Article  Google Scholar 

  • Gao W, Zhang CH, Gao LZ, Shi XY, Liu YM, Song B (2008) Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectono- stratigraphic implications. Geol Bull China 27(6):793–798 (in Chinese with English abstract)

    Google Scholar 

  • Geng YS, Zhou XW, Wang XS, Ren LD (2009) Late-Paleoproterozoic granite events and their geological significance in Helanshan area, Inner Mongolia: evidence from geochronology. Axta Petrol Sin 25(8):1830–1842 (in Chinese with English abstract)

    Google Scholar 

  • Guan QB, Li SC, Zhang C, Shi Y, Li PC (2016) Zircon U-Pb dating, geochemistry and geological significance of the I-type granites in Helong area, the eastern section of the southern margin of Xing-Meng Orogenic Belt. Acta Petrol Sin 32(9):2690–2706 (in Chinese with English abstract)

    Google Scholar 

  • Halls HC, Li JH, Davis D, Hou G, Zhang BX, Qian XL (2000) A precisely dates Proterozoic paleomagnetic pole from the North China craton, and its relevance to paleocontinental reconstructions. Geophys J Int 143(1):185–203

    Article  Google Scholar 

  • Hu WX (1994) On mineralization period and metallogenic epoch of the Hu-Bi type copper deposits. J Geol Min Res North China 9(2):161–166

    Google Scholar 

  • Huang XL, Wilde SA, Zhong JW (2013) Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary. Precambrian Res 233(3):337–357

    Article  Google Scholar 

  • Jiang N, Guo JH, Zhai MG (2011) Nature and origin of the Wenquan granite: implications for the provenance of proterozoic A-type granites in the North China craton. J Asian Earth Sci 42:76–82

    Article  Google Scholar 

  • Kerr A, Fryer BJ (1993) Nd isotopic evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chem Geol 104(1–4):39–60

    Article  Google Scholar 

  • King PL, White AJR, Chappell BW (1997) Characterization and origin of aluminous a -type granites from the Lachlan Fold Belt, Southeastern Australia. J Petrol 38(3):371–391

    Article  Google Scholar 

  • King PL, Chappell BW, Allen CM, White AJR (2001) Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Aust J Earth Sci 48:501–514

    Article  Google Scholar 

  • Koschek G (1993) Origin and significance of the SEM cathodoluminescence from zircon. J Microsc 171(3):223–232

    Article  Google Scholar 

  • Kusky TM, Li JH (2003) Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci 22(4):383–397

    Article  Google Scholar 

  • Kusky TM, Windley BF, Zhai MG (2007) Tectonic evolution of the North China block: from orogen to craton to orogen. In: Zhai MG, Windley BF, Kusky TM, Meng QR (eds) Mesozoic sub-continental Lithospheric Thinningunder eastern Asia. Special Publications 280. Geological Society, London, pp 1–34

    Google Scholar 

  • Li JH, Qian XL, Huang XN, Liu SW (2000) Tectonic framework of North China Block and its cratonization in the early Precambrian. Acta Petrol Sin 16(1):1–10

  • Li JH, Niu XL, Kusky TM, Polat A (2004) Neoarchean plate tectonic evolution of North China and its correlation with global cratonic blocks. Earth Sci Front (China University of Geosciences, Beijing) 11(3):273–283 (in Chinese)

    Google Scholar 

  • Li JH, Niu XL, Cheng SH, Qian XL (2006) The early Precambrian tectonic evolution of continental craton: a case study from north China. Earth Sci J China Univ Geosci 31(3):285–293 (in Chinese)

    Google Scholar 

  • Li SZ, Zhao GC, Sun M (2016) Paleoproterozoic amalgamation of the North China Craton and the assembly of the Columbia supercontinent. Chin Sci Bull 61(9):919–925

    Google Scholar 

  • Liu SW, Liang HH, Zhao GC, Hua YG, Jian AH (2000) Isotopic chronology and geological events of Precambrian complex in Taihangshan region. Sci China(Series D:Earth Sciences) 43(4):386–393

    Article  Google Scholar 

  • Liu HT, Zhai MG, Liu JM, Sun SH (2002) The Mesozoic granitoids in the northern marginal region of North China Craton: evolution from post-collishional to anorogenic settings. Acta Petrol Sin 18(4):433–448

    Google Scholar 

  • Liu SW, Pan YM, Xie QL, Zhang J, Li QG, Yang B (2005) Geochemistry of the Pakeoproterozonic Nanying granitic genisses in the Fuping complex: implications for the tectonic evolution of the central zone, North China Craton. J Asian Earth Sci 24(5):643–658

    Article  Google Scholar 

  • Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010a) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb Dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH (2010b) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55:1535–1546

    Article  Google Scholar 

  • Liu JF, Chi XG, Zhao Z, Hu ZC, Chen JQ (2013) Zircon U-Pb age and petrogenetic discussion on Jianshetun adakite in Balinyouqi, InnerMongolia. Acta Petrol Sin 29(3):827–839 (in Chinese with English abstract)

    Google Scholar 

  • Liu JF, Li JY, Chi XG, Qu JF, Hu ZC, Guo CL (2014) Petrological and geochenmical characteristics of the early Triassic granite belt in southeastern Inner Mongolia and its tectonic setting. Acta Geol Sin, 2014 89(9):1677–1690

    Google Scholar 

  • Loiselle MC, Wones DS (1979) Characteristics and origin of anorogenic granites. Geol Soc Am 11:468

    Google Scholar 

  • Long XP, Sun M, Yuan C, Kröner A, Hu AQ (2012) Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton, NW China: Implications for the reconstruction of the Columbia supercontinent. Precambrian Res 222-223(223):474–487

    Article  Google Scholar 

  • Lu LZ, Xu XC, Liu FL (1996) The Precambrian Khoudalite series in the North of China. Changchun Publishing House, Changchun, pp 39–58 (in Chinese)

    Google Scholar 

  • Lu SN, Yu HF, Jin W, Li HK, Zheng JK (2002) Microcontinents on the eastern margin of Tarim paleocontinent. Acta Petrol Mineral 21(4):317–326

  • Lu XP, Wu FY, Guo JH, Yin CJ (2005) Late PaleoPorterozoic granitic magmatism and crustal evolution in the Tonghua region, northest China. Acta Petrol Sin 21(3):721–736 (in Chinese with English abstract)

    Google Scholar 

  • Ludwig KR (2003) User’s Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel, Special Publication No. 4.Berkeley Geochronology Center, p. 71

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101(5):635–643

    Article  Google Scholar 

  • Mingram B, Trumbull RB, Littman S, Gerstenberger H (2000) A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: Evidence for mixing of crust and mantle-derived components. Lithos 54(1–2):1–22

    Article  Google Scholar 

  • Mushkin A, Navon O, Halicz L, Hartmann G, Stein M (2003) The petrogenesis of A-type magmas from the Amram Massif, southern Israel. J Petrol 44(5):815–832

    Article  Google Scholar 

  • Nutman AP, AP WYS, Liu DY (2009) Integrated field geological and zircon morphology evidence for ca. 3.8 Ga rocks at Anshan: comment on “Zircon U–Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton” by Wu et al.[Precambrian Res. 167 (2008) 339–362]. Precambrian Res 72(3–4):357–360

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites: Orogenic Andesites and related rocks. Wiley, Chichester, pp 526–548

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Peng P, Zhai MG (2002) Two major Precambrian geological events of North China Block (NCB): characteristics and property. Adv Earth Sci 17(6):818–825 (in Chinese with English abstract)

    Google Scholar 

  • Peng P, Zhai MG, Zhang HF, Guo JH (2005) Geochronological constraints on the Paleoproterozoic evolution of the North China craton: SHRIMP zircon ages of different types of mafic dikes. Int Geol Rev 47(5):492–508

    Article  Google Scholar 

  • Piao SC, Li XJ, Zheng TC, Mu GF, Yang ZY, Wang QX (2002) Geochemical features and predicton of the deep-seated ore bodies in the Dongfeng gold deposit, Inner Monglia. J Jilin Unicersity ( Earth Science editon) 32(1):16–20

    Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Article  Google Scholar 

  • Ren KX, Yan GH, Cai JH, Mu BL, Li FT, Wang YB, Chu ZY (2006) Chronology and geologucal implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrol Sin 22(2):377–386 (in Chinese with English abstract)

    Google Scholar 

  • Santosh M (2010) Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction. Precambrian Res 178(1):149–167

    Article  Google Scholar 

  • Shao JA, Zhang LQ, Li DM (2002) Three Proterozoic extensional events in the North China Craton. Acta Petrol Sin 18(2):152–160

    Google Scholar 

  • Song B, Zhang YH, Wang YS (2002) Mount making and procedure of the SHRIMPdating. Geol Rev 48:26–30 (in Chinese with English abstract)

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanicbasalts:implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in oceanic basins. Geological Society Special Publication, London, pp 42313–42345

    Google Scholar 

  • Teng XM, Santosh M (2015) A long-lived magma chamber in the Paleoproterozoic North China Craton: Evidence from the Damiao gabbro-anorthosite suite. Precambrian Res 256:79–101

    Article  Google Scholar 

  • Trap P, Faure M, Lin W, Monié P (2007) Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Res 156:85–106

    Article  Google Scholar 

  • Trap P, Faure M, Lin W, Monie P, Meffre S, Melleton J (2009) The Zanhuang massif, the second and eastern suture zone of the Paleoproterozoic trans-North china Orogen. Precambrian Res 172:80–98

    Article  Google Scholar 

  • Wang H, Mo X (1995) An outline of the tectonic evolution of China. Episodes 18:6–16

    Google Scholar 

  • Wang YJ, Fan WM, Zhang YH, Guo F, Zhang HF, Peng TP (2004) Geochemical, 40Ar/ 39 Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China Craton. Precambrian Res 135(1–2):55–77

    Article  Google Scholar 

  • Wang ZH, Wilde SA, Wan JL (2010) Tectonic setting and significance of 2.3-2.1 Ga magmatic events in the Trans-North China Orogen: new constraints from the Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping Area. Precambrian Res 178(1–4):27–42

    Article  Google Scholar 

  • Wang W, Liu SW, Bai X, Li QG, Yang PT, Zhao Y, Zhang SH, Guo RR (2013) Geochemistry and zircon U–Pb–Hf isotopes of the late Paleoproterozoic Jianping diorite–monzonite–syenite suite of the North China Craton: Implications for petrogenesis and geodynamic setting. Lithos 162-163:175–194

    Article  Google Scholar 

  • Wang Z, Zhou H, Wang X, Wang Z, Zhou H, Wang X, Zheng M, Santosh M, Jing X (2016) Detrital zircon fingerprints link western north china craton with east gondwana during ordovician. Gondwana Res 40:58–76

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: Geochemical characteristics discrimination and petrogenesis. Contrib Mineral Petrol 95(4):407–419

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    Article  Google Scholar 

  • Wilde SA, Zhao GC, Sun M (2002) Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Res 5(1):85–94

  • Wilde SA, Wu FY, Zhang XZ (2003) Late pan-African Magmatism in Northeastern China: SHRIMP Upb zircon evidence from Granitoids in the Jiamusi massif. Precambrian Res 122:311–327

    Article  Google Scholar 

  • Williams, Claesson (1987) Isotopic evidence for the Precambrianprovenance and Caledonian metamorphism of high grade paragneissesfrom the Seve Nappes, Scandinavian Caledonides. Contrib Mineral Petrol 97:05–217

    Article  Google Scholar 

  • Windley BF (1995) The evolving continents, 3rd edn. John Wiley & Sons, Chichester, 526p

    Google Scholar 

  • Wu FY, Sun DY, Li H, Jahn BM, Wilde S (2002) A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem Geol 187(1–2):143–173

    Article  Google Scholar 

  • Wu SP, Wang MY, Qi KJ (2007) Present situation of researches on A_type granites: a review. Acta Petrol Mineral 26(1):57–67 (in Chinese with English abstract)

    Google Scholar 

  • Xia XP, Sun M, Zhao GC (2006) LA-ICP-MS U-Pb geochronology of the Huai'an complex: constrains on late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China and its tectonic significance. Precambrian Res 144(3/4):199–212

    Article  Google Scholar 

  • Xie L, Wang RC, Chen XM, Qiu JS, Wang DZ (2005) Th-rich Zircon in alkaline A type : Significance of granitemineralogy and Petrology. Chin Sci Bull 50(10):1016–1024 (in Chinese)

    Article  Google Scholar 

  • Yang JH, Wu FY, Liu XM, Xie LW (2005) Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China. Acta Petrol Sin 21(6):1633–1644 (in Chinese)

    Google Scholar 

  • Yang JH, Wu FY, Chung SL, Wilde SA, Chu MF (2006) A hybrid origin for the Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos 89(1–2):89–106

    Article  Google Scholar 

  • Yuan ZX (2001) A discussion on the naming of a -type granite. Acta Petrol Mineral 20(3):293–296

    Google Scholar 

  • Yu JH, Fu HQ, Zhang FL, Wan FX (1994) The Chicheng -Gubeikou plutonic rock of rapakivi suite and proterozoic rifting. J Geol Min Res North China 9(3):34–46 (in Chinese with English abstract)

    Google Scholar 

  • Zhai MG (2004) 2.1~1.7 Ga geological event group and its geotectonic significance. Acta Petrol Sin 20(6):1343–1353

    Google Scholar 

  • Zhai MG (2014) Multi-stage crustal growth and cratonization of the North China Craton. Geosci Front 5(4):457–469

    Article  Google Scholar 

  • Zhai MG, Liu WJ (2003) Palaeoproterozoic tectonic history of the North China craton: A review. Precambrian Res 122(1–4):183–199

    Article  Google Scholar 

  • Zhai MG, Peng P (2007) Paleoproterozoic events in the North China Craton. Acta Petrol Sin 23(11):2665–2682

    Google Scholar 

  • Zhai MG, Santosh M (2011) The early Precambrian odyssey of the North China Craton: A synoptic overview. Precambrian Res 20(1):6–25

    Google Scholar 

  • Zhai MG, Santosh M (2013) Metallogeny of the North China Craton: link with secular changes in the evolving earth. Gondwana Res 24:275–297

    Article  Google Scholar 

  • Zhai MG, Bian AG, Zhao TP (2000) The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic. Sci China Ser D Earth Sci 43(S1):219–232

    Article  Google Scholar 

  • Zhai MG, HU B, Peng P, Zhao TP (2014) Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Sci Front 21(1):100–121

    Google Scholar 

  • Zhang J, Zhao GC, Li SZ, Sun M, Liu SW, Wilde SA, Kröner A, Yin CQ (2007a) Deformation history of the Hengshan Complex: implications for the tectonic evolution of the Trans-North China Orogen. J Struct Geol 29(6):933–949

    Article  Google Scholar 

  • Zhang SH, Liu SW, Zhao Y, Yang JH, Song B, Liu XM (2007b) The 1.75-1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Res 155(3–4):287–312

    Article  Google Scholar 

  • Zhang SH, Liu SW, Zhao Y, Yang JH, Song B, Liu XM (2007c) The 1.75-1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Res 155(3–4):287–312

    Article  Google Scholar 

  • Zhang SH, Liu SW, Zhao Y, Yang JH, Song B, Liu XM (2007d) The 1.75–1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Res 155:287–312

    Article  Google Scholar 

  • Zhang C, Han BF, Liu SW, Li JQ, Zhao L, Zhang L (2009) Shrimp U-Pb dating of biltite in DAqingshan, Inner Mongolia, and its significance. Acta Petrol Sin 25(3):561–567

  • Zhang DD, Guo JH, Tian ZH, Liu F (2016a) Metamorphism and P–T evolution of high pressure granulite in Chicheng, northern part of the Paleoproterozoic Trans-North China Orogen. Precambrian Res 280:76–94

    Article  Google Scholar 

  • Zhang SH, Zhao Y, Ye H, Hu GH (2016b) Early Neoproterozoic emplacement of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the southeastern North China Craton. Precambrian Res 272:203–225

    Article  Google Scholar 

  • Zhao TP, Zhou MF (2009) Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. J Asian Earth Sci 36(2–3):183–195

    Article  Google Scholar 

  • Zhao GC, Cawood PA (2012) Precambrian geology of China. Precambrian Res 222-223:13–54

    Article  Google Scholar 

  • Zhao GC, Wilde SA, Cawood PA, Lu LZ (1998) Thermal evolution of basement rocks from the eastern part of the North China craton and its bearing on tectonic setting. Int Geol Rev 40:706–721

  • Zhao TP, Zhou MF, Zhai MG, Xia B (2002a) Paleoproterozoic riftrelated volcanism of the Xiong'er Group, North China Craton: Implications for the breakup of Columbia. Int Geol Rev 44(4):336–351

    Article  Google Scholar 

  • Zhao GC, Cawood PA, Wilde SA (2002b) Review of global 2.1-1.8 Ga orogens: Implication for a pre-Roodinia supercontinent. Earth Sci Rev., 59: 125-162

  • Zhao TP, Chen FK, Zhai MG, Xia B (2004) Single zircon U-Pb ages and their geological significance of the Damiao anorthosite comples, Hebei Province, China. Acta Petrol Sin 20(3):685–690 (in Chinese)

    Google Scholar 

  • Zhao GC, Wilde SA, Mi S, Li SZ, Zhang J (2005a) SHRIMP U-Pb zircon geochronology of the Hengshan-Wutai-Fuping mountain belt, North China Craton. Geochim Cosmochim Acta 69(10):832–832

    Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li SZ (2005b) Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res 16(2):177–202

    Article  Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li SZ, Liu SW, Zhang J (2006) Composite nature of the North China Granulite-Facies Belt: Tectonothermal and geochronological constraints. Gondwana Res 9(3):337–348

    Article  Google Scholar 

  • Zhao GC, He YH, Sun M (2009) The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the PaleoMesoproterozoic Columbia Supercontinent. Gondwana Res 16(2):170–181

    Article  Google Scholar 

  • Zhou YY, Zhai MG, Zhao TP, Lan ZW, Sun QY (2014) Geochronological and geochemical constraints on the petrogenesis of the Early Paleoproterozoic potassic granite in the Lushan area, southern margin of the North China Craton. J Asian Earth Sci 94:190–204

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to two anonymous reviewers and the editors of Arabian Journal of Geosciences for their careful review and insightful suggestions, which resulted in great improvements to this article.

This work was supported by the basic scientific research project of the Central University Teachers (ZY20150201), the Innovation Team funding program (ZY20160109), and Higher School Science and Technology Research Key Project in Hebei Province (ZD2015203).

About the first author

Sun Zhenjun, Male; born in 1982; Institute of disaster prevention, Department of Earthquake Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Yu, H., Li, C. et al. Paleoproterozoic (ca. 1.7 Ga) magmatism in Chifeng, Inner Mongolia: implications for the tectonic evolution of the Trans-North China Orogen. Arab J Geosci 10, 453 (2017). https://doi.org/10.1007/s12517-017-3206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3206-7

Keywords

Navigation