Advertisement

Felsic dykes in the Neoproterozoic Nagar Parkar Igneous Complex, SE Sindh, Pakistan: geochemistry and tectonic settings

  • Tahseenullah KhanEmail author
  • Mamoru Murata
  • M. Qasim Jan
  • Hafiz Ur Rehman
  • Muhammad Zafar
  • Hiroaki Ozawa
  • Anwar Qadir
  • Saqib Mehmood
Original Paper

Abstract

The Nagar Parkar Igneous Complex consists of Neoproterozoic igneous and metamorphic rocks dissected by mafic, felsic, and rhyolitic dykes. The latter can be classified broadly into porphyritic felsic dykes intruding gray and pink granites at Nagar Parkar and the surrounding areas, and the orthophyric felsic dykes intruding amphibolites, deformed pink granites, and the alkaline mafic dykes in the Dhedvero area, north of Nagar Parkar. The porphyritic felsic dykes are composed of perthites, quartz, and albitic plagioclase whereas the orthopheric felsic dykes contain K-feldspar (dominant), plagioclase, and minor quartz. Geochemically, the porphyritic and orthophyric felsic dykes are subalkaline and alkaline demonstrating post-orogenic A2- and OIB-A1-type characteristic on Nb–Y–Ce and Nb–Y–3Ga ternary plots, respectively. One orthophyric felsic dyke contains normative acmite and sodium metasilicate. This study suggests two distinct tectonic regimes for the origin of the felsic dykes of the area. The porphyritic felsic dykes show similarities with the ~800–700 Ma granites of the area, the rhyolite dykes of the Mount Abu, western Rajasthan in India, and the granites of the Seychelles microcontinent. The orthophyric felsic dykes show chemical resemblance with the Tavidar volcanic suite of western Rajasthan and the Silhouette and North islands of the Seychelles microcontinent. This study confirms spatial and temporal links among the Rodinian fragments exposed in the Nagar Parkar area of Pakistan, western Rajasthan of India, and the Seychelles microcontinent.

Keywords

Nagar Parkar Felsic dykes Petrogenesis Rodinian fragments 

Notes

Acknowledgements

We are thankful to the President of the Naruto University of Education, National University Corporation, Naruto, Tokushima, Japan and Rector of the Bahria University, Pakistan for facilitating this research study in Japan. We are also obliged to Drs. K. Yokoyama and M. Shigeoka, National Museum of Nature and Science, Tokyo and Dr. Goto, A., University of Hyogo, Japan for the U–Th–Pb EPMA analysis. Thanks are also extended to anonymous reviewers for their valuable suggestions for the improvement of the manuscript.

References

  1. Ahmad SM, Chaudhry MN (2007) Geochemical characterization and origin of the Karai-gabbro from the Neoproterozoic Nagarparker complex, Pakistan. Geol Bull Punjab Univ 42:1–14Google Scholar
  2. Ahmad SM, Chaudhry MN (2008) A-type granites from the Nagarparker complex, Pakistan: geochemistry and origin. Geol Bull Punjab Univ 43:69–81Google Scholar
  3. Ahsan SN, Firdous R, Mastoi AS, Ghuryani S (2008) Dhedvero iron oxide gold ± copper prospect, a preliminary evaluation, Nagar Parker Taluka, Thar Parker District, Sindh, Pakistan. Geol Surv of Pak Inf Release 872:1–29Google Scholar
  4. Ashwal LD, Demaiffe D, Torsvik TH (2002) Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: the case for an Andean-type arc origin. J Petrol 43:45–83CrossRefGoogle Scholar
  5. Ashwal LD, Solanki AM, Pandit MK, Corfu F, Hendriks BWH, Burke K, Torsvik TH (2013) Geochronology and geochemistry of Neoproterozoic Mt. Abu granitoids, NW India: regional correlation and implications for Rodinia paleogeography. Precambrian Res 236:265–281. doi: 10.1016/j.precamres.2013.07.018 CrossRefGoogle Scholar
  6. Bhushan SK (2000) Malani rhyolite—a review. Gondwana Res 3(1):65–77CrossRefGoogle Scholar
  7. Biswas SK (2005) A review of structure and tectonic of Kuch basin, Western India with special reference to earthquakes. Curr Sci India 88(10):1592–1600Google Scholar
  8. Butt KA, Jan MQ, Karim A (1994) Late Proterozoic rocks of Nagar Parker, southeastern Pakistan: a preliminary petrologic account. In: Ahmad R, Sheikh AM (eds) Geology in South Asia-1 Hydrocarb Dev Inst Pak, pp 106–109Google Scholar
  9. Butt KA, Nazirullah R, Syed SH (1989) Geology and gravity interpretation of Nagar Parker area and its potential for surfacial uranium deposits. Kashmir J Geol 6 and 7:41–50Google Scholar
  10. Collier JS, Sansom V, Ishizuka O, Taylor RN, Minshull TA, Whitmarsh RB (2008) Age of Seychelles–India break-up. Earth Planet Sci Lett 272:264–277Google Scholar
  11. Coquand H (1857) Albitophyre, labradophyre, oligophyre, orthophyre, and pyroxenite. Traité des roches. Baillière, Paris, p 421 Google Scholar
  12. Eby GN, Kochhar N (1990) Geochemistry and petrogenesis of the Malani igneous suite, north Peninsular India. Geol Soc India 36(2):109–130Google Scholar
  13. Eby WA (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644CrossRefGoogle Scholar
  14. Ganerød M, Torsvik TH, Van Hinsbergen DJJ, Corfu F, Werner S, Owen-Smith TM, Ashwal L, Webb S, Hendriks BWH (2011) Palaeoposition of the Seychelles microcontinent in relation to the Deccan traps and the plume generation zone in Late Cretaceous–Early Palaeogene time. In: Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of earth history vol. 357. Geological Society, Special Publication, London, pp 229–252Google Scholar
  15. Hoshino M (1986) Amphiboles and coexisting ferromagnesian silicates in granitic rocks in Mahé, Seychelles. Lithos 19:11–25CrossRefGoogle Scholar
  16. Jan MQ, Agheem MH, Laghari A, Anjum S (2016) Geology and petrography of the Nagar Parkar igneous complex, southeastern Sindh: the Wadhrai body. J Himal Earth Sci 49(1):17–29Google Scholar
  17. Jan MQ, Agheem MH, Laghari A, Anjum S (2017) Geology and petrography of the Nagar Parkar igneous complex, southeastern Sindh, Pakistan: the Kharsar body. J Geol Soc India 89:91–98CrossRefGoogle Scholar
  18. Jan MQ, Laghari A, Agheem MH, Anjum S (2014) Geology and petrography of the Nagar Parkar igneous complex, southeastern Sindh: the Dinsi body. J Himal Earth Sci 47(2):1–14Google Scholar
  19. Jan MQ, Laghari A, Khan MA (1997) Petrography of Nagar Parkar igneous complex, Tharparkar, southeast Sindh. Geol Bull Univ Peshawar 30:227–249Google Scholar
  20. Kazmi AH, Khan RA (1973) The report on the geology, minerals and water resources of Nagar Parkar, Pakistan. Geol Surv Pak Inf Release 64:1–32Google Scholar
  21. Kaur P, Chaudhri N, Sekhar SB, Yokoyama K (2006) Electron probe microanalyser chemical zircon ages of the Khetri granitoids, Rajasthan, India: records of wide spread late Paleoproterozoic extension-related Magmatism. Curr Sci 90(1): 65–73.Google Scholar
  22. Khan T, Murata M, Rehman H, Zafar M, Ozawa H (2012) Nagarparker granites showing Rodinia remnants in the southeastern part of Pakistan. J Asian Earth Sci 59:39–51CrossRefGoogle Scholar
  23. Kochhar N (2004) Geological evolution of the trans-Aravalli block (TAB) of the NW Indian shield and Seychelles connection in the Late Proterozoic: evidence from plume related A-type Malani Magmatism. Geol Surv India Spec Publ 84:247–264Google Scholar
  24. Laghari A (2004) Petrology of the Nagar Parkar granites and associated basic rocks, Thar District, Sindh, Pakistan. Unpublished Ph.D thesis, University of PeshawarGoogle Scholar
  25. Laghari A, Jan MQ, Khan MA, Agheem MH, Sahito AG, Anjum S (2013) Petrography and major element chemistry of mafic dykes in the Nagar Parkar Igneous Complex, Tharparkar, Sindh. J Himal Earth Sci 46:1–11Google Scholar
  26. Maheshwaril A, Garhia SS, Sial AN, Ferreira VP, Dwivedil V, Chittora VK (2002) Geology and geochemistry of granites around Jaswantpura, Jalore District, Southwestern Rajasthan, India. Gondwana Res 5(2):373–379CrossRefGoogle Scholar
  27. Markhand AH, Xia Q, Agheeem MH, Jia L (2017) U-Pb zircon dating and geochemistry of the rocks at Wadhrai body, Nagar Parkar Igneous Complex, Sindh, Pakistan. Sindh Univ Res J (Sci Ser) 49(1):01–06Google Scholar
  28. Meert JG, Pandit MK, Pradhan VR, Banks J, Sirianni R, Stroud M, Newstead B, Gifford J (2010) Precambrian crustal evolution of Peninsular India: a 3.0 billion years odyssey. J Asian Earth Sci 39(6–9):483–515CrossRefGoogle Scholar
  29. Montel JM, Foret S, Veschambre M, Nicollet G, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131(1–4):37–53CrossRefGoogle Scholar
  30. Muhammad A, Alizai AH (2007) Preliminary economic evaluation of granite deposits of Nagarparker, district Tharparker, Sindh, Pakistan. Geol Surv Pak Inf Release 861:1–12Google Scholar
  31. Murata M (1993) Major and trace component analysis of Korean Institute of Energy and Resources igneous rock reference samples using X-ray fluorescence spectrometer. Research Bull Nat Sci Naruto Univ Educ Jpn 8:37–39Google Scholar
  32. Muslim M, Akhtar T, Khan ZM, Khan T (1997) Geology of Nagar Parkar area, Thar Parkar district, Sindh, Pakistan. Geol Surv Pak Inf Release 605:1–21Google Scholar
  33. Owen-Smith TM, Ashwal LD, Torsvik TH, Ganerod M, Nebel O, Web SJ, Werner SC (2013) Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism. Lithos 182–183:33–47. doi: 10.1016/j. lithos.2013.09.011 CrossRefGoogle Scholar
  34. Pascoe EH (1959) A manual of geology of India and Burma, II. Government of India Press, Calcutta, pp 484–1338Google Scholar
  35. Pathan MT, Rais A (1975) Preliminary report of the investigation of Nagarparkar igneous complex. Sindh Univ J Sci 1:93–97Google Scholar
  36. Raza HA, Ahmed R, Ali SM, Sheikh AM, Shafique NA (1989) Exploration performance in sedimentary zones of Pakistan. Pak J Hydrocarbon Res 1(1):1–7Google Scholar
  37. Santosh M, Yokoyam K, Biju-Sekhar S, Rogers JJW (2003) Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: implications on the history of supercontinents. Gondwana Res 6:29–63CrossRefGoogle Scholar
  38. Sen A, Pande K, Hegner E, Sharma KK, Dayal AM, Sheth HC, Mistry H (2012) Deccan volcanism in Rajasthan: 40Ar-39Ar geochronology and geochemistry of the Tavidar volcanic suite. J Asian Earth Sci 59:127–140CrossRefGoogle Scholar
  39. Sharma KK (2004) The Neoproterozoic Malani magmatism of the northwestern Indian shield: implications for crust-building processes. Proceedings of Indian Academy of Sciences, Earth Planet Sci Lett 113(4):795–807Google Scholar
  40. Singh AK, Vallinayagam G (2004) Geochemistry and petrogenesis of anorogenic basic volcanic-plutonic rocks of the Kundal area, Malani Igneous Suite, western Rajasthan, India. Proceedings of Indian Academy of Sciences, Earth Planet Sci Lett 113(4):667–681Google Scholar
  41. Solanki AM (2011) A petrographic, geochemical and geochronological investigation of deformed granitoids from SW Rajasthen: Neoproterozoic age of formation and evidence of Pan-African imprint. MSc thesis, Uni WitwatersrandGoogle Scholar
  42. Srivastava KR (1988) Magmatism in the Aravalli mountain range and its environments. In: Roy AB (ed) Precambrian of the Aravalli Mountains, Rajasthan, India. Geol Soc India, Mem 9:71–93Google Scholar
  43. Sun SS, Mcdonough WF (1989) Chemical and isotopic systematics of ocean basalts: implication for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magnetism in the ocean basins, vol. 42. Geology Society, Special Publication, London, pp 313–345. doi: 10.1144/GSL.SP.1989.042.01.19 Google Scholar
  44. Suwa K, Tokaida K, Hoshino M (1994) Paleomagnetic and petrological reconstruction of the Seychelles. Precambrian Res 69:281–292Google Scholar
  45. Suzuki S, Adachi M (1991) The chemical Th–U–total Pb isochron ages of zircon and monazite from the gray granite of the Hidaterrane, Japan. J Earth Sci Nagoya Univ 38:11–38Google Scholar
  46. Suzuki S, Adachi M (1992) Middle Precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogoisland, Japan: their origin and implications for the correlation of basement gneiss of Southwest Japan and Korea. Tectonophysics 235:277–292CrossRefGoogle Scholar
  47. Torsvik TH, Ashwal LD, Tucker RD, Eide EA (2001a) Neoproterozoic geochronology and paleogeography of the Seychelles microcontinent: the India link. Precambrian Res 110:47–59Google Scholar
  48. Torsvik TH, Carter LM, Ashwal LD, Bhushan SK, Pandit MK, Jamtveit B (2001b) Rodinia refined or obscured: palaeomagnetism of the Malani Igneous Suite, NW, India. Precambrian Res 65:319–339Google Scholar
  49. Vallinayagam G (2011) Petrology and geochemistry of acid dykes rocks with reference to their bearing on rare metal and rare earth mineralization: studies from Malani Igneous Suite, Northern Peninsular India. In: Srivastava RK (ed) Dyke Swarms: Keys for Geodynamic Interpretation. Springer-Verlag, Berlin, pp 277–282. doi: 10.1007/978-3-642-12496-9_12496-9_16
  50. Whalen JB, Curry KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petr 95:407–419Google Scholar
  51. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343. doi: 10.1016/0009-2541(77)90057-2 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2017

Authors and Affiliations

  • Tahseenullah Khan
    • 1
    Email author
  • Mamoru Murata
    • 2
  • M. Qasim Jan
    • 3
  • Hafiz Ur Rehman
    • 4
  • Muhammad Zafar
    • 1
  • Hiroaki Ozawa
    • 5
  • Anwar Qadir
    • 6
  • Saqib Mehmood
    • 1
  1. 1.Department of Earth and Environmental SciencesBahria UniversityIslamabadPakistan
  2. 2.Department of Geosciences, Faculty of Science, Naruto University of EducationNational University CorporationNarutoJapan
  3. 3.National Centre of Excellence in GeologyUniversity of Peshawar and COMSTECH IslamabadPeshawarPakistan
  4. 4.Department of Earth and Environmental Science, Faculty of ScienceKagoshima UniversityKagoshimaJapan
  5. 5.International Cooperation Center for the Teacher Education and TrainingNaruto University of EducationNarutoJapan
  6. 6.Department of GeologyHaripur UniversityHaripurPakistan

Personalised recommendations