Mediterranean Sea and anthropogenic influences on ambient vibration amplitudes in the low-frequency and high-frequency domains in the Algiers region

Abstract

Ambient vibrations have been continuously recorded at Dar El Beida, about 20 km from Algiers (Algeria). This data set allows determining that, in the low-frequency domain (<1 Hz), ambient vibration sources are mainly linked to Mediterranean Sea effects, while in the high-frequency domain, they are closely related to anthropogenic activity. Climatic conditions have an influence on the ambient vibration spectral amplitudes in the low-frequency domain, which is not the case in the high-frequency domain. The limit between the low-frequency and high-frequency domain, based on natural versus anthropogenic activity, is not clear cut and lies between 1.25 and 1.50 Hz. Variations of H/V peak amplitudes in the low-frequency domain are clearly linked to the climatic conditions. In the high-frequency domain, H/V peaks are not related to climatic conditions and cannot be clearly related to anthropogenic source changes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Akamatsu J, Fujita M, Nishimura K (1992) Vibrational characteristics of microseisms and their applicability to microzoning. J Phys Earth 40:137–150

    Article  Google Scholar 

  2. Ardhuin F, Stutzmann E, Schimmel M, Mangeney A (2011) Ocean wave sources of seismic noise. J Geophys Res:115

  3. Asten MW (1978) Geological control of the three-component spectra of rayleigh-wave microseisms. Bull Seismol Soc Am 68(6):1623–1636

    Google Scholar 

  4. Asten MW, Henstridge JD (1984) Arrays estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophysics 49-11:1828–1837

    Article  Google Scholar 

  5. Bensalem R, Chatelain J-L, Machane D, Oubaiche EH, Hellel M, Guillier B, Djeddi M, Djadia L (2010) Ambient vibration techniques applied to explain heavy damages caused in corso (Algeria) by the 2003 Boumerdes earthquake: understanding seismic amplification due to gentle slopes. Seismol Res Lett 81(6):928–940. doi:10.1785/gssrl.81.6.928

    Article  Google Scholar 

  6. Bonnefoy-Claudet S (2004) Nature du bruit de fond sismique : implications pour les études des effets de site. Thèse de doctorat. Université Joseph Fourier-grenoble, France 241pp

    Google Scholar 

  7. Bouchelouh A (2011) Effet de sites sur la baie d’Alger :bruit de fond sismique, rapports spectraux sur séismes et comparaison avec des profils de vitesse en Onde S. Mémoire de Magister. Université des sciences et de la technologie Houari Boumediene, Algérie 93pp

    Google Scholar 

  8. Bour M, Fouissac D, Dominique P, Martin C (1998) On the use of microtremor recordings in seismic microzonation. Soil Dyn Earthq Eng 17:465–474

    Article  Google Scholar 

  9. Cara F, Di Giulio G, Rovelli A (2003) A study on seismic noise variations at Colfiorito, Central Italy: implications for the use of H/V spectral ratios. Geophys Res Lett 30(18):1972. doi:10.1029/2003GL017807

    Article  Google Scholar 

  10. Chatelain J-L, Guéguen P, Guillier B, Fréchet J, Bondoux F, Sarrault J, Sulpice P, Neuville JM (2000) CityShark: a user-friendly instrument dedicated to ambient noise (microtremor) recording for site and building response studies. Seismol Res Lett 71(6):698–703

    Article  Google Scholar 

  11. Chatelain JL, Guillier B, Cara F, Duval AM, Atakan K, Bard PY, the WP02 SESAME team (2007) Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull Earthq Eng 6(1):33–74. doi:10.1007/s10518-007-9040-7 on line 3 July 2007

    Article  Google Scholar 

  12. Chatelain JL, Guillier B, Guéguen P, Fréchet J, Sarrault J (2012) Ambient vibration recording for single-station, array and building studies made simple: CityShark II, 3, 6A. Int J Geosci. doi:10.4236/ijg.2012.326118 Published online November 2012 (http://www.SciRP.org/journal/ijg

  13. Cornou C (2002) Traitement d’antenne et imagerie sismique dans l’agglomération grenobloise Alpes françaises: implications pour les effets de site. Thèse de doctorat. Université Joseph Fourier, France 260pp

    Google Scholar 

  14. Di Giacomo D, Gallipoli MR, Mucciarelli M, Parolai S, Richwalski SM (2005) Analysis and modeling of HVSR in the presence of a velocity inversion: the case of Venosa, Italy. Bull Seismol Soc Am 95(6):2364–2372. doi:10.1785/0120040242

    Article  Google Scholar 

  15. Ebel J (2002) Watching the weather using a seismograph. Seismol Res Lett 73:689–700

    Article  Google Scholar 

  16. Gimbert F, Tsai VC (2015) Predicting short-period, wind-wave-generated seismic noise in coastal regions. Earth Planet Sci Lett 426(2015):280–292. doi:10.1016/j.epsl.2015.06.017

    Article  Google Scholar 

  17. Glangeaud L, Aymé A, Mattauer M, Muraour P (1952) Histoire géologique de la province d’Alger. Monographies régionales, 1ère série, vol vol. XIX. Congrès Géologique International, Alger n°25

    Google Scholar 

  18. Google Earth V 7.1.8.3036 (2015) Mediterranean region 32s 348459.75m and 4242259.63m, Eye alt 2643.00 Km. http://www.earth.google.com. Accessed 21 Dec 2016

  19. Guillier B, Atakan K, Chatelain JL, Havskov J, Ohrnberger M, Cara F, Duval AM, Zacharopoulos S, Teves-Costa P, the SESAME Team (2007b) Influence of instruments on the H/V spectral ratios of ambient vibrations. Bull Earthq Eng 6:3–32. doi:10.1007/s10518-007-9039-0

    Article  Google Scholar 

  20. Guillier B, Chatelain JL, Bonnefoy-Claudet S, Haghshenas E (2007a) Use of ambient noise: from spectral amplitude variability to H/V stability. J Earthq Eng 11(6):925–942. doi:10.1080/13632460701457249

    Article  Google Scholar 

  21. Guo Z, Aydin A (2016) A modified HVSR method to evaluate site effect in northern Mississippi considering ocean wave climate. Eng Geol 200:104–113. doi:10.1016/j.enggeo.2015.12.012

    Article  Google Scholar 

  22. Gutenberg B (1958) Microseisms Advan Geophys 5:53–92

    Article  Google Scholar 

  23. Haubrich RA, Munk WH, Snodgrass FE (1963) Comparative spectra of microseisms and swell. Bull Bull Seismol Soc Am 53:27–37

    Google Scholar 

  24. Hillers G, Ben-Zion Y (2011) Seasonal variations of observed noise amplitudes at 2-18 Hz in southern California. Geophys J Int 184:860–868. doi:10.1111/j.1365-246X.2010.04886.x

    Article  Google Scholar 

  25. Hillers G, Ben-Zion Y, Campillo M, Zigone D (2015) Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise. Geophys J Int 202:920–932. doi:10.1093/gji/ggv151

    Article  Google Scholar 

  26. Hillers G, Campillo M, Ma K-F (2014) Seismic velocity variations at TCDP are controlled by MJO driven precipitation pattern and high fluid discharge properties. Earth Planet Sci Lett 391(2014):121–127. doi:10.1016/j.epsl.2014.01.040

    Article  Google Scholar 

  27. Kanai K, Tanaka T (1961) On microtremors. VIII Bulletin of the Earthquake Research Institute, vol 39. Tokyo University, Japan, pp 97–114

    Google Scholar 

  28. Kedar S, Longuet-HigginsM WF, Graham N, Clayton R, Jones C (2008) The origin of deep ocean microseisms in the North Atlantic Ocean. Proc R Soc Math Phys Eng Sci. doi:10.1098/rspa.2007.0277

  29. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88(1):228–241

    Google Scholar 

  30. Lepore S, Markowicz K, Grad M (2016) Impact of wind on ambient noise recorded by seismic array in northern Poland. Geophys J Int 205:1406–1413. doi:10.1093/gji/ggw093

    Article  Google Scholar 

  31. Mucciarelli M, Gallipoli MR, Arcieri M (2003) The stability of the horizontal-to-vertical spectral ratio of triggered noise and earthquake recordings. Bull Seismol Soc Am 93(3):1407–1412

    Article  Google Scholar 

  32. Mucciarelli M, Monachesi G (1998) A quick survey of local amplifications and their correlation with damage observed during the Umbro-Marchesan (Italy) earthquake of September 26, 1997. J Earthq Eng 2:1–13

    Google Scholar 

  33. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface. Q Rep Railw Tech Res Inst 30(1):2–30

    Google Scholar 

  34. Nogoshi M, Igarashi T (1971) On the propagation characteristics of microtremors. Journal of the Seismological Society. Japan 23:264–280

    Google Scholar 

  35. Oubaiche EH, Chatelain JL, Bouguern A, Bensalem R, Machane D, Hellel M, Khaldaoui F, Guillier B (2012) Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast. Seismol Res Lett 83(5):1–9. doi:10.1785/0222012004

    Google Scholar 

  36. Sens-Schönfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys Res Lett 33(21). doi:10.1029/2006GL027797

  37. Seo K (1997) Comparison of measured microtremors with damage distribution. JICA, Research and Development Project on Earthquake Disaster Prevention, Japan

    Google Scholar 

  38. Volant P, Cotton F, Gariel JC (1998) Estimation of site response using the H/V method. Applicability and limits of this technique on Garner Valley downhole array dataset California). Proceedings of the 11th European Conference on Earthquake Engineering. Paris.

  39. Yamanaka H, Dravinski M, Kagami H (1993) Continuous measurements of microtremors on sediments and basement in Los Angeles, California. Bull Seismol Soc Am 83-5:1595–1609

    Google Scholar 

  40. Zurn W, Exß J, Steffen H, Kroner C, Jahr T, Westerhaus M (2007) On reduction of long-period horizontal seismic noise using local barometric pressure. Geophys J Int 171:780–796. doi:10.1111/j.1365-246X.2007.03553.x

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers for their constructive suggestions, which significantly help improving the manuscript. We thank the Institut de Recherche pour le Développement (IRD) for providing the recording equipment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rabah Bensalem.

Additional information

This article is part of the Topical Collection on Current Advances in Geology of North Africa

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bensalem, R., Chatelain, JL., Machane, D. et al. Mediterranean Sea and anthropogenic influences on ambient vibration amplitudes in the low-frequency and high-frequency domains in the Algiers region. Arab J Geosci 10, 282 (2017). https://doi.org/10.1007/s12517-017-3065-2

Download citation

Keywords

  • Ambient vibration
  • Spectral amplitude
  • H/V spectral ratio
  • Climatic conditions
  • Algiers