Skip to main content

Advertisement

Log in

Geological mapping of Santorini Volcanic island (Greece), with the combined use of Pleiades 1A and ENVISAT satellite images

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Very high-resolution (VHR) Pleiades 1A and ENVISAT/ASAR (Advanced Synthetic Aperture Radar) satellite images were used for lithological and tectonic mapping respectively of Santorini island complex, South Aegean, Greece. The results were compared to the existing geological maps of the study area. The extracted, quantitative results within GIS environment, followed by a ground-truth visit, showed that there is some variance in the delineation of the boundaries of certain lithological units on the geological map compared to those on the Pleiades 1A image and that a number of lineaments detected on the ENVISAT image could be incorporated to the faults’ population. As a general conclusion, new findings can be embodied to the existing geological maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arlegui LE, Soriano MA (2003) An example of a comparison between Thematic Mapper and radar images in the central Ebro basin. Int J Remote Sens 24(3):457–474

    Article  Google Scholar 

  • Behnia P, Harris JR, Rainbird RH, Williamson MC, Sheshpari M (2012) Remote predictive mapping of bedrock geology using image classification of Landsat and SPOT data, western Minto Inlier, Victoria Island, Northwest Territories, Canada. Int J Remote Sens 33(21):6876–6903

    Article  Google Scholar 

  • Bogdanov I, Huaman D, Thovert JF, Genthon P, Adler PM (2011) Tectonic stresses seaward of an aseismic ridge—Trench collision zone. A remote sensing approach on the Loyalty Islands, SW Pacific. Tectonophysics 499:77–91

    Article  Google Scholar 

  • Druitt TH (2014) New insights into the initiation and venting of the Bronge-Age eruption of Santorini (Greece), from componenet analysis. Bull Volcanol 76:794

    Article  Google Scholar 

  • Druitt TH, Edwards L, Mellors M, Pyle DM, Sparks RSJ, Lanphere M, Davies M, Barriero B (1999) Santorini Volcano (Geological map of the Santorini islands, Scale 1/20.000). Geological Society Memoir No. 19, London.

  • European Space Agency/ESA (2005) Spaceborne radar applications in Geology (ESA TM-17). ESA Publications Division, ESTEC, Noordwijk

    Google Scholar 

  • Friedrich WL, Kromer B, Heinemeier J, Friedrich M, Pfeiffer T, Talamo S (2006) Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312(5773):548Apr 28

    Article  Google Scholar 

  • Hadigheh SMH, Ranjbar H (2013) Lithological mapping in the eastern part of the Central Iranian Volcanic Belt using combined ASTER and IRS data. J Indian Soc Remote Sens 41(4):921–931

    Article  Google Scholar 

  • He J, Harris JR, Sawada M, Behnia P (2015) A comparison of classification algorithms using Landsat-7 and Landsat-8 data for mapping lithology in Canada’s Arctic. Int J Remote Sens 36(8):2252–2276

    Article  Google Scholar 

  • Institute of Geology and Mineral Exploration/IGME (1980) Geological map of 1/50.000 scale. Sheet: Thira island.

  • Jakob S, Bühler B, Gloaguen R, Breitkreuz C, Eliwa HA, Gameel KE (2015) Remote sensing based improvement of the geological map of the Neoproterozoic Ras Gharib segment in the Eastern Desert (NE-Egypt) using texture features. J Afr Earth Sci 111:138–147

    Article  Google Scholar 

  • Liu B, Jiang W, Zhang J, Luo Y, Gong L (2010) Wenchuan earthquake ruptures located by offset-tracking procedure of ENVISAT ASAR amplitude images. Earthq Sci 23:283–287

    Article  Google Scholar 

  • Morelli M, Piana F (2006) Comparison between remote sensed lineaments and geological structures in intensively cultivated hills (Monferrato and Langhe domains, NW Italy). Int J Remote Sens 27(20):4471–4493

    Article  Google Scholar 

  • Mountrakis D, Pavlides S, Chatzipetros A, Meletlidis S, Tranos M, Vougioukalakis G, Kilias A (1998) Active deformation of Santorini. In Proceedings of the second workshop Santorini, Greece, 2–4 May 1996:13–22.

  • O’Leary DW, Friedman JD, Pohn HA (1976) Lineament, linear, lineation: some proposed new standards for old terms. Bull Geol Soc Am 87:1463–1469

    Article  Google Scholar 

  • Othman AA, Gloaguen R (2014) Improving lithological mapping by SVM classification of spectral and morphological features: the discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sens 6:6867–6896

    Article  Google Scholar 

  • Pal SK, Majumdar TJ, Bhattacharya AK (2007) Usage of ERS SAR data over the Singhbhum shear zone, India for structural mapping and tectonic studies. Geocarto Int 22(4):285–295

    Article  Google Scholar 

  • Pour AB, Hashim M (2015a) Evaluation of Earth Observing-1 (EO1) data for lithological and hydrothermal alteration mapping: a case study from Urumieh-Dokhtar Volcanic Belt, SE Iran. J Indian Soc Remote Sens 43(3):583–597

    Article  Google Scholar 

  • Pour AB, Hashim M (2015b) Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geol Rev 64:13–22

    Article  Google Scholar 

  • Pournamdari M, Hashim M, Pour AB (2014) Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran. Adv Space Res 54:694–709

    Article  Google Scholar 

  • Prieto EF, Quénéhervé G, Bachofer F, Shahzad F, Maerker M (2015) Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data. Geomorphology 248:427–439

    Article  Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens Environ 84:350–366

    Article  Google Scholar 

  • Saadi NM, Watanabe K (2009) Assessing image processing techniques for geological mapping: a case study in Eljufra, Libya. Geocarto Int 24(3):241–253

    Article  Google Scholar 

  • Yamaguchi Y, Naito C (2009) Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. Int J Remote Sens 24(22):4311–4323

    Article  Google Scholar 

  • Zhang X, Li P (2014) Lithological mapping from hyperspectral data by improved use of spectral angle mapper. Int J Appl Earth Obs Geoinf 31:95–109

    Article  Google Scholar 

Download references

Acknowledgements

The Pleiades 1A satellite images were kindly provided by Airbus Defence and Space (ordered via Geostore), through ESA’s Category-1 Project ID:29826 and the ENVISAT/ASAR image was provided by ESA through the framework of the same Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Oikonomidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oikonomidis, D., Pavlides, S. Geological mapping of Santorini Volcanic island (Greece), with the combined use of Pleiades 1A and ENVISAT satellite images. Arab J Geosci 10, 175 (2017). https://doi.org/10.1007/s12517-017-2972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-2972-6

Keywords

Navigation