Ambient seismic vibration analysis and ground characterization in the vicinity of Algiers seismic zone

Abstract

The Dar El Beida area, situated in the Mitidja basin, in the north central Tellian Atlas is characterized by its Plio-Quaternary sediments. The site effect analysis in this zone surrounding Algiers city is very important. The soil is constituted from recent soft sediments capable of amplifying seismic motion. Indeed, the analysis thanks to the ratio H/V ambient vibration method confirms these assumptions. An electric resistivity tomography strengthened the results obtained from ambient vibration for site characterization. This demonstrates once again the more or less homogeneous character of formations in this area. However, strongly amplifying its sediments largely explains the seismic acceleration of 0.52 g recorded following the 2003 Boumerdes earthquake.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aymé A (1964) Carte géologique au 1/50 000 d’Alger. Feuille n° 23, Service de la Carte Géologique de l’Algérie

  2. Bard PY (1999) Microtremor measurements: a tool for site effect estimation? The effects of surface geology on ground motion. ESG 2(3):1251–1279

    Google Scholar 

  3. Benhallou H (1985) Les Catastrophes Séismiques de la Région d’Echéliff dans le contexte de la Séismicité Historique de l’Algérie, Thèse de Doctorat Es-Sciences, IST-USTHB, Alger, Algeria, 294 p

  4. Benouar D (1994) Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Annali di Geofisica, Special issue 37(4):459–860

    Google Scholar 

  5. Bensalem R, Chatelain JL, Machane D, Oubaiche EH, Hellel M, Guillier B, Djeddi M, Djadia L (2010) Ambient vibration techniques applied to explain heavy damages caused in Corso (Algeria) by the 2003 Boumerdes earthquake: understanding seismic amplification due to gentle slopes. Seismol Res Lett 81(6):928–940. doi:10.1785/gssrl.81.6.928

    Article  Google Scholar 

  6. Bonilla LF, Steidl JH, Lindley GT, Tumarkin AG, Archuleta RJ (1997) Site amplification in San Fernando Valley, California: variability of site effect estimation using the S-wave, coda and H/V methods. Bull Seismol Soc Am 87:710–730

    Google Scholar 

  7. Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fah D (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167:827–837

    Article  Google Scholar 

  8. Boudiaf A (1996) Etude sismotectonique de la région d’Alger et de la Kabylie (Algérie): utilisation des modèles numériques de terrain (MNT) et de la télédétection pour la reconnaissance des structures tectoniques actives: contribution à l’évaluation de l’aléa sismique, Ph.D. thesis, Montpellier II University, 268 p

  9. Bougdal R, Larriere A, Pincent B, Panet M, Bentabet A (2013) Les glissements de terrain du quartier Belouizdad, Constantine, Algérie. Bull Eng Geol Environ 72:189–202

    Article  Google Scholar 

  10. Bounif A, Dorbath C, Ayadi A, Meghraoui M, Beldjoudi H, Laouami N, Frogneux M, Slimani A, Alasset PJ, Kharroubi A, Ousadou F, Chikh M, Harbi A, Larbes S, Maouche S (2004) The 21 May 2003 Zemmouri (Algeria) Earthquake Mw 6.8: relocation and aftershock sequence analysis. Geophys Res Lett 31(L19606):1–4

    Google Scholar 

  11. Chabane S, Machane D, Mariscal A, Oubaiche E-H, Bensalem R, Gherboudj F (2016) Contribution du Bruit Vibratoire Ambiant dans l’Analyse des Aléas Géotechniques (Site Pilote à Dar El Beida, Bassin de la Mitidja, Alger). MoMIES “Mediterranean School on Modeling & Multi - scale Imagery in Earth sciences”, 10th - 19th May, Algiers

  12. Chandler VW, Lively RS (2016) Utility of the horizontal-to-vertical spectral ratio passive seismic method for estimating thickness of Quaternary sediments in Minnesota and adjacent parts of Wisconsin. Interpretation 4:SH71–SH90. doi:10.1190/INT-2015-0212.1

    Article  Google Scholar 

  13. Chatelain JL, Guéguen P, Guillier B, Fréchet J, Bondoux F, Sarrault J, Sulpice P, Neuville JM (2000) CityShark: a user-friendly instrument dedicated to ambiant noise (microtremor) recording for site and building response studies. Seismol Res Lett 71(6):698–703

    Article  Google Scholar 

  14. Chatelain JL, Guillier B, Cara F, Duval AM, Atakan K, Bard PY, the WP02 SESAME team (2008) Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull Earthq Eng 6:33–74. doi:10.1007/s10518-007-9040-7

    Article  Google Scholar 

  15. Chatelain JL, Guillier B, Gueguen P, Fréchet J, Sarrault J (2012) Ambient vibration recording for single-station, array and building studies made simple: CityShark II. Int J Geosci 3:1168–1175

    Article  Google Scholar 

  16. Diaz-Segura EG (2016) Numerical estimation and HVSR measurements of characteristic site period of sloping terrains. Géotechnique Lett 6:176–181. doi:10.1680/ jgele.16.000

    Article  Google Scholar 

  17. Edwards LS (1977) A modified pseudosection for resistivity and induced polarization. Geophysics 42:1020–1036

    Article  Google Scholar 

  18. Gallipoli MR, Mucciarelli M (2009) Comparison of site classification from VS30, VS10, and HVSR in Italy. Bull Seismol Soc Am 99(1):340–351. doi:10.1785/0120080083

    Article  Google Scholar 

  19. Giocoli A, Stabile TA, Adurno I, Perrone A, Gallipoli MR, Gueguen E, Norelli E, Piscitelli S (2015) Geological and geophysical characterization of the southeastern side of the High Agri Valley (southern Apennines, Italy). Nat Hazards Earth Syst Sci 15:315–323

    Article  Google Scholar 

  20. Glangeaud L (1932) Etude géologique de la région littorale de la province d’Alger. - Imprimerie de l’Université Y. Cadoret

  21. Guéguen P, Chatelain JL, Guillier B, Yepes H (2000) An indication of soil topmost layer response in Quito (Ecuador) using noise H/V spectral ratio. J Soil Dyn Earthq Eng 19:127–133

    Article  Google Scholar 

  22. Guemache MA, Machane D, Beldjoudi H, Gharbi S, Djadia L, Benahmed S, Ymmel H (2010) On a damaging earthquake-induced landslide in the Algerian Alps: the March 20, 2006 Laalam landslide (Babors chain, northeast Algeria), triggered by the Kherrata earthquake (Mw = 5.3). Nat Hazards 54:273–288

    Article  Google Scholar 

  23. Guemache MA, Chatelain J-L, Machane D, Benahmed S, Djadia L (2011) Failure of landslide stabilization measures: the Sidi Rached viaduct case (Constantine, Algeria). J African Earth Sci 59(2011):349–358

    Article  Google Scholar 

  24. Guillier B, Chatelain JL, Hellel M, Machane D, Mezouer N, Bensalem R, Oubaiche EH (2005) Smooth bumps in H/V curves over a broad area from single-station ambient noise recordings are meaningful and reveal the importance of Q in array processing: the Boumerdes (Algeria) case. Geophys Res Lett 32:L24306. doi:10.1029/2005GL023726

    Article  Google Scholar 

  25. Guillier B, Chatelain JL, Bonnefoy-Claudet S, Haghshenas E (2007) Use of ambient noise: from spectral amplitude variability to H/V stability. J Earthq Eng 11(6):925–942. doi:10.1080/13632460701457249

    Article  Google Scholar 

  26. Haghshenas E, Bard PY, Theodulidis Nand the SESAME WP04 Team (2008) Empirical evaluation of microtremor H/V spectral ratio. Bull Earthq Eng 6:75. doi:10.1007/s10518-007-9058-x

    Article  Google Scholar 

  27. Harbi A, Maouche S, Vaccari F, Aoudia A, Oussadou F, Panza GF, Benouar D (2007) Seismicity, seismic input and site effects in the Sahel-Algiers region (north Algeria). Soil Dyn Earthq Eng 27(5):427–447

    Article  Google Scholar 

  28. Haskell NA (1960) Crustal reflection of plane SH waves. J Geophys Res 65:4147–4150

    Article  Google Scholar 

  29. Hée A (1950) Catalogue des séismes Algériens de 1850 à 1911. Annales de l’Institut de Physique du Globe de Strasbourg 6:41–49

    Google Scholar 

  30. Imai T, Tonouchi K. (1982) Correlation of N-value with S-wave velocity and shear modulus—Proceedings of the 2nd European symposium of Penetration Testing, Amsterdam, pp. 57–72. Amsterdam, 24–27 May

  31. JICA and CGS (2006) Microzonage Sismique d’Alger. Final report, volume 2. Oyo International Corp. Nippon Koei Co., Ltd

  32. Kibboua A, Farsi MN, Chatelain JL, Guillier B, Bechtoula H, Mehani Y (2008) Modal analysis and ambient vibration measurements on Mila-Algeria cable stayed bridge. Struct Eng Mech 29(2):171–186

    Article  Google Scholar 

  33. Laouami N, Slimani A (2013) Earthquake induced site effect in the Algiers–Boumerdes region: relation between spectral ratios higher peaks and observed damage during the May 21st Mw 6.8 Boumerdes Earthquake (Algeria). Pure Appl Geophys 170:1785–1801

    Article  Google Scholar 

  34. Layadi K, Semmane F, Yelles-Chaouche AK (2016) Site-effects investigation in the City of Chlef (formerly El-Asnam), Algeria, using earthquake and ambient vibration data. Bull Seismol Soc Am 106(5):2185–2196. doi:10.1785/0120150365

    Article  Google Scholar 

  35. Loke MH (2012) Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Penang

    Google Scholar 

  36. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  37. Loke MH, Dahlin T (2002) A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49:149–162

    Article  Google Scholar 

  38. Machane D, Bouhadad Y, Cheikh Lounis G, Chatelain JL, Oubaiche EH, Abbes K, Guillier B, Bensalem R (2008) Examples of geomorphologic and geological hazards in Algeria. Nat Hazards 45:295–308

    Article  Google Scholar 

  39. Machane D, Chabane S, Bensalem R, Oubaiche EH, Cheikh Lounis G, Moulouel H, Hellel M, Chatelain JL (2016) Risques Naturels en Algérie. MoMIES “Mediterranean School on Modeling & Multi-scale Imagery in Earth sciences” 10th–19th May, Algiers

  40. Madera GA (1970) Fundamental period and amplification of peak acceleration in layered systems, Mass. Research report R 70–37. MIT Press, Cambridge 77 pp

    Google Scholar 

  41. Mainsant G, Larose E, Brönnimann C, Jongmans D, Michoud C, Jaboyedoff M (2012) Ambient seismic noise monitoring of a clay landslide: toward failure prediction. J Gesophys Res 117:F01030. doi:10.1029/2011JF002159

    Google Scholar 

  42. Matsushima S, Hirokawa T, De Martin F, Kawase H, Sánchez Sesma FJ (2014) The effect of lateral heterogeneity on horizontal to vertical spectral ratio of microtremors inferred from observation and synthetics. Bull Seismol Soc Am 104(1):381–393. doi:10.1785/0120120321

    Article  Google Scholar 

  43. Meghraouui M (1988) Géologie des zones sismiques du nord de l’Algérie. Paléosismologie, tectonique active et synthèse sismotectonique. Thèse. Sci. Univ. Paris VI, 356 p

  44. Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett 275(3–4):221–232

    Article  Google Scholar 

  45. Michel C, Edwards B, Poggi V, Burjánek J, Roten D, Cauzzi C, Fäh D (2014) Assessment of site effects in alpine regions through systematic site characterization of seismic stations. Bull Seismol Soc Am 104(6):2809–2826. doi:10.1785/0120140097

    Article  Google Scholar 

  46. Mokrane A, Ait Messaoud A, Sebai A, Ayadi A (1994) Les séismes en Algérie de 1365 à 1992. Publication du Centre de Recherche en Astronomie, Astrophysique et Géophysique. Département: Etudes et Surveillance Sismique, ESS, C.R.A.A.G, Alger-Bouzaréah 277 pp

    Google Scholar 

  47. Mulargia F, Castellaro S (2016) HVSR deep mapping tested down to 1.8 km in Po Plane Valley, Italy. Phys Earth Planet Inter. doi:10.1016/j.pepi.2016. 08.002

    Google Scholar 

  48. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface. Q Rep Railw Tech Res Inst 30(1):2–30

    Google Scholar 

  49. Nogoshi M, Igarashi T (1971) On the propagation characteristics of microtremors. J Seism Soc, Japan 23:264–280

    Google Scholar 

  50. Oubaiche EH, Chatelain JL, Bouguern A, Bensalem R, Machane D, Hellel M, Khaldaoui F, Guillier B (2012) Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast. Seismol Res Lett 83:6. doi:10.1785/0220120004

    Article  Google Scholar 

  51. Pilz M, Parolai S, Leyton F, Campos J, Schau J (2009) A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geoph J Int 178:713–728

    Article  Google Scholar 

  52. Régnier J, Bonilla LF, Bertrand E, Semblat JF (2014) Influence of the VS profiles beyond 30 m depth on linear site effects: assessment from the KiK-net data. Bull Seismol Soc Am 104(5):2337–2348. doi:10.1785/0120140018

    Article  Google Scholar 

  53. Renalier F, Jongmans D, Campillo M, Bard PY (2010) Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. J Geophys Res 115:F03032. doi:10.1029/2009JF001538

  54. Rincona O, Shakoorb A, Ocampoc M (2016) Investigating the reliability of H/V spectral ratio and image entropy for quantifying the degree of disintegration of weak rocks. Eng Geol 207(3):115–128

    Article  Google Scholar 

  55. Rothé JP (1950) Les séismes de Kherrata et la séismicité de l’Algérie, Bull. Ser. de la Carte Géologique de l’Algérie, MENDE, 1950, pp 16–17

  56. SESAME project (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation. European Commission—Research General Directorate Project No. EVG1-CT-2000-00026 SESAME, report D23.12, 62 pp.; http://SESAME-fp5.obs.ujf-grenoble.fr

  57. Tarabusi G, Caputo R (2016) The use of HVSR measurements for investigating buried tectonic structures: the Mirandola anticline, Northern Italy, as a case study. Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-016-1322-3

    Google Scholar 

  58. Vella A, Galea P, D’Amico S (2013) Site frequency response characterisation of the Maltese islands based on ambient noise H/V ratios. Eng Geol 163:89–100

    Article  Google Scholar 

  59. Yelles-Chaouche A, Boudiaf A, Djellit H, Bracene R (2006) La tectonique active de la région nord-algérienne. C R Geosc 338:126–139

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the two anonymous reviewers for their constructive suggestions which greatly improve our manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Souhila Chabane.

Additional information

This article is part of the Topical Collection on Current Advances in Geology of North Africa

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chabane, S., Machane, D., Tebbouche, M.Y. et al. Ambient seismic vibration analysis and ground characterization in the vicinity of Algiers seismic zone. Arab J Geosci 10, 69 (2017). https://doi.org/10.1007/s12517-017-2869-4

Download citation

Keywords

  • Algiers
  • Mitidja basin
  • H/V ambient noise
  • Electrical resistivity tomography