Groundwater quality assessment using integrated geochemical methods, multivariate statistical analysis, and geostatistical technique in shallow coastal aquifer of Terengganu, Malaysia

  • Zahidi Hamzah
  • Ahmad Zaharin Aris
  • Mohammad Firuz Ramli
  • Hafizan Juahir
  • Tahoora Sheikhy Narany
Original Paper

Abstract

Extensive agricultural, residential, and industrial activities have increased demand for water supplies, which can lead to groundwater quality degradation. The integration of geochemical methods, multivariate statistical analysis, and geostatistical approaches were carried out on 169 groundwater samples to elucidate the regional factors and processes that influencing the geochemical composition of groundwater in coastal shallow aquifer of Terengganu, Malaysia. Hydrochemical modelling revealed that the abundance of Ca and Mg was contributed by carbonate and silicate weathering while higher HCO3 and Cl were resulted from reverse ion exchange reaction. Therefore, the dominant hydrogeochemical facies of groundwater was Ca-Mg-HCO3-Cl type. The influence of salinization resulting from seawater mixing to the groundwater was corroborated by Cl/HCO3 ratio, which affected around 50.9% of the groundwater samples slightly or moderately. Spatial mapping using ordinary kriging found that the threat of sea water intrusion is more prominent in the major river confluence especially around Terengganu and Marang River in the northeast and Dungun and Kemaman River confluence in southeast of study area. Moreover, factor analyses concluded that salinization, anthropogenic activities, reverse ion exchange, weathering processes, agricultural impact, and seasonal variations were the factors that regulate 63% of the major ion chemistry in study area. Finally, these findings showed the importance of understanding the hydrochemical characteristics for effective utilization, aquifer protection, and prediction of changes to minimize the effects of salinization and reduce human pollution such as agriculture and urbanization. It is essential steps in order to safeguard the utilization of groundwater resources for future generations.

Keywords

Geochemical analysis Ionic ratios Saturation indices Factor analysis Spatial distribution 

References

  1. Abdullah MH, Mokhtar MB, Musta B, Aris AZ (2008) Hydrochemical analyses of a disturbed aquifer of a small island in Malaysia. Fresenius Environmetal Bulletin 17:2043–2051Google Scholar
  2. Appelo, C.A.J., Postma, D., 2004. Geochemistry, groundwater and pollution, 2nd Edition, A.A. Balkema Publishers. doi:10.2136/vzj2005.1110br
  3. Aris AZ, Abdullah MH, Ahmed A, Woong KK (2007) Controlling factors of groundwater hydrochemistry in a small island’s aquifer. International Journal of Environmental Science & Technology 4:441–450. doi:10.1007/BF03325979 CrossRefGoogle Scholar
  4. Aris AZ, Abdullah MH, Praveena SM (2009) Evolution of groundwater chemistry in the shallow aquifer of a small tropical sland in Sabah, Malaysia. Sains Malaysiana 38:805–812Google Scholar
  5. Aris AZ, Praveena SM, Abdullah MH, Radojevic M (2011) Statistical approaches and hydrochemical modelling of groundwater system in small tropical island. J Hydroinf:1–16. doi:10.2166/hydro.2011.072
  6. Arslan H, Demir Y (2013) Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey. Environ Monit Assess 185:1027–1040. doi:10.1007/s10661-012-2611-3 CrossRefGoogle Scholar
  7. Arveti N, Sarma MRS, Aitkenhead-Peterson JA, Sunil K (2011) Fluoride incidence in groundwater: a case study from Talupula, Andhra Pradesh, India. Environ Monit Assess 172:427–443. doi:10.1007/s10661-010-1345-3 CrossRefGoogle Scholar
  8. Azuhan, M. (1999). Malaysian groundwater in the next millennium. In Proceeding of Groundfos Dealers ConferenceGoogle Scholar
  9. Batayneh AT, Al-Taani AA (2015) Integrated resistivity and water chemistry for evaluation of groundwater quality of the Gulf of Aqaba coastal area in Saudi Arabia. Geosci J 20:403–413. doi:10.1007/s12303-015-0053-y CrossRefGoogle Scholar
  10. Belkhiri L, Mouni L, Boudoukha A (2012) Geochemical evolution of groundwater in an alluvial aquifer: case of El Eulma aquifer, East Algeria. J Afr Earth Sci 66-67:46–55. doi:10.1016/j.jafrearsci.2012.03.001 CrossRefGoogle Scholar
  11. Belkhiri L, Narany TS (2015) Using multivariate statistical analysis geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resour Manag. doi:10.1007/s11269-015-0929-7 Google Scholar
  12. Bob M, Abd N, Saud R (2014) Multi-objective assessment of groundwater quality in Madinah City. Saudi Arabia Water Qual Expo Health. doi:10.1007/s12403-014-0112-z Google Scholar
  13. Devic G, Djordjevic D, Sakan S (2014) Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci Total Environ 468-469:933–942. doi:10.1016/j.scitotenv.2013.09.011 CrossRefGoogle Scholar
  14. Deutsch CV (1998) Geostatistical software library and user’s guide. Oxford University Press, New YorkGoogle Scholar
  15. DOSM, 2010. Population Distribution and Basic Demographic Characteristics 2010. Kuala Lumpur, Malaysia.Google Scholar
  16. Gimenez-Forcada E, Vega-Alegre M (2015) Arsenic, barium, strontium and uranium geochemistry and their utility as tracers to characterize groundwaters from the Espadan-Calderona Triassic Domain, Spain. Sci Total Environ 512-513:599–612. doi:10.1016/j.scitotenv.2014.12.010 CrossRefGoogle Scholar
  17. Giridharan L, Venugopal T, Jayaprakash M (2009) Assessment of water quality using chemometric tools: a case study of river Cooum, South India. Arch Environ Contam Toxicol 56:654–669. doi:10.1007/s00244-009-9310-2 CrossRefGoogle Scholar
  18. Glynn PD, Plummer LN (2005) Geochemistry and the understanding of ground-water systems. Hydrogeol J 13:263–287. doi:10.1007/s10040-004-0429-y CrossRefGoogle Scholar
  19. Gobbett DJ, Hutchison CS, Burton CK (1973) Geology of the Malay Peninsula. Wiley-Interscience, New YorkGoogle Scholar
  20. Gurunadha Rao VVS, Tamma Rao G, Surinaidu L, Mahesh J, Mallikharjuna Rao ST, Mangaraja Rao B (2013) Assessment of geochemical processes occurring in groundwaters in the coastal alluvial aquifer. Environ Monit Assess 185:8259–8272. doi:10.1007/s10661-013-3171-x CrossRefGoogle Scholar
  21. Hadi A, Fadzali M (2006) Geological notes of Negeri Terengganu. Minerals and Geoscience Department Malaysia. Report, Ministry of Natural Resources and Environment, MalaysiaGoogle Scholar
  22. Hamzah, Z., Ismail, H., 2013. Kajian Sumber Air Bawah Tanah Kawasan Kemaman, Terengganu Darul Iman. Kuala Lumpur, Malaysia.Google Scholar
  23. Hamzah, Z., Ismail, H., 2012. Pemantauan Air Bawah Tanah Terengganu Tahun 2006–2010. Kuala Lumpur.Google Scholar
  24. Han Y, Wang G, Cravotta CA, Hu W, Bian Y, Zhang Z, Liu Y (2013) Hydrogeochemical evolution of Ordovician limestone groundwater in Yanzhou, North China. Hydrol Process 27:2247–2257. doi:10.1002/hyp.9297 CrossRefGoogle Scholar
  25. Islam MA, Zahid A, Rahman M (2016) Investigation of groundwater quality and its suitability for drinking and agricultural use in the south central part of the coastal region in Bangladesh. Exposure and Health. doi:10.1007/s12403-016-0220-z Google Scholar
  26. Kadri, M., Nawawi, M.N.M., Yahya, A. K., Alam, S., 2010. Groundwater exploration using 2-d resistivity imaging technique in Marang, Terengganu, Malaysia, in: AIP Conference Proceedings 1250, Progress of Physics Research in Malaysia - PERFIK2009. pp. 197–200. doi:10.1063/1.3469634
  27. Kambhammettu BVNP, Allena P, King JP (2011) Application and evaluation of universal kriging for optimal contouring of groundwater levels. Journal of Earth System Science 120:413–422. doi:10.1007/s12040-011-0075-4 CrossRefGoogle Scholar
  28. Kuldip-singh D-s, Hundal HS (2011) Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda district of Punjab, Northwest India. Environmental Earth Sciences 64:1823–1833. doi:10.1007/s12665-011-0989-9 CrossRefGoogle Scholar
  29. Kura NU, Ramli MF, Ibrahim S, Sulaiman WNA, Aris AZ (2014) An integrated assessment of seawater intrusion in a small tropical island using geophysical, geochemical, and geostatistical techniques. Environ Sci Pollut Res 21:7047–7064. doi:10.1007/s11356-014-2598-0 CrossRefGoogle Scholar
  30. Kura NU, Ramli MF, Sulaiman WNA, Ibrahim S, Aris AZ (2015) An overview of groundwater chemistry studies in Malaysia. Environ Sci Pollut Res:1–19. doi:10.1007/s11356-015-5957-6
  31. Kura NU, Firuz Ramli M, Azmin Sulaiman WN, Ibrahim S, Zaharin Aris A, Mustapha A (2013) Evaluation of factors influencing the groundwater chemistry in a small tropical island of Malaysia. Int J Environ Res Public Health 10:1861–1881. doi:10.3390/ijerph10051861 CrossRefGoogle Scholar
  32. Li J, Wang Y, Xie X, Su C (2012) Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China. J Geochem Explor 118:77–89. doi:10.1016/j.gexplo.2012.05.002 CrossRefGoogle Scholar
  33. Li P, Wu J, Qian H, Zhang Y, Yang N (2016) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert. Northwest China Exposure and Health. doi:10.1007/s12403-016-0193-y Google Scholar
  34. Lin CY, Abdullah MH, Praveena SM, Yahaya AHB, Musta B (2012) Delineation of temporal variability and governing factors influencing the spatial variability of shallow groundwater chemistry in a tropical sedimentary island. J Hydrol 432-433:26–42. doi:10.1016/j.jhydrol.2012.02.015 CrossRefGoogle Scholar
  35. Liu C-W, Lin K-H, Kuo Y-M (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313:77–89. doi:10.1016/S0048-9697(02)00683-6 CrossRefGoogle Scholar
  36. Masoud A a (2014) Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. J Afr Earth Sci 95:123–137. doi:10.1016/j.jafrearsci.2014.03.006 CrossRefGoogle Scholar
  37. Mayo AL, Loucks MD (1995) Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. J Hydrol 172:31–59. doi:10.1016/0022-1694(95)02748-E CrossRefGoogle Scholar
  38. Mondal NC, Singh VP, Singh VS, Saxena VK (2010) Determining the interaction between groundwater and saline water through groundwater major ions chemistry. J Hydrol 388:100–111. doi:10.1016/j.jhydrol.2010.04.032 CrossRefGoogle Scholar
  39. Mustapha A, Aris AZ (2012a) Spatial aspects of surface water quality in the Jakara Basin, Nigeria using chemometric analysis. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering 47:1455–1465. doi:10.1080/10934529.2012.673305 CrossRefGoogle Scholar
  40. Mustapha A, Aris AZ (2012b) Multivariate statistical analysis and environmental modeling of heavy metals pollution by industries. Pollution Journal of Environmental Studies 21:1359–1367Google Scholar
  41. Nagarajan R, Rajmohan N, Mahendran U, Senthamilkumar S (2010) Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environ Monit Assess 171:289–308. doi:10.1007/s10661-009-1279-9 CrossRefGoogle Scholar
  42. Parkhurst, D.L., Appelo, C.A.., 1999. User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver, Colorado.Google Scholar
  43. Pathak JK, Alam M, Sharma S (2008) Interpretation of groundwater quality using multivariate statistical technique in Moradabad City, Western Uttar Pradesh State, India. E-Journal of Chemistry 5:607–619. doi:10.1155/2008/359182 CrossRefGoogle Scholar
  44. Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K (2010) Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ Monit Assess 168:63–90. doi:10.1007/s10661-009-1092-5 CrossRefGoogle Scholar
  45. Praveena SM, Aris AZ, Radojevic M (2010) Heavy metals dyanamics and source in intertidal mangrove sediment of Sabah, Borneo Island. Environment Asia 3:79–83Google Scholar
  46. Pu J, Yuan D, Zhang C, Zhao H (2012) Tracing the sources of strontium in karst groundwater in Chongqing, China: a combined hydrogeochemical approach and strontium isotope. Environmental Earth Sciences 67:2371–2381. doi:10.1007/s12665-012-1683-2 CrossRefGoogle Scholar
  47. Ravikumar P, Prakash KL, Somashekar RK (2013) Evaluation of water quality using geochemical modeling in the Bellary Nala command area, Belgaum district, Karnataka State, India. Carbonates Evaporites 28:365–381. doi:10.1007/s13146-012-0124-3 CrossRefGoogle Scholar
  48. Razak YA, K M (2009) Groundwater management in Malaysia-status and challenges. Proceedings of the Colloquium held in putrajaya; Malaysia from 25-26 March 2009. Kuala Lumpur: Akademi Sains Malaysia. Putrajaya: Akademi Sains Malaysia & Jabatan Mineral dan GeosainsGoogle Scholar
  49. Reddy AGS, Kumar KN (2010) Identification of the hydrogeochemical processes in groundwater using major ion chemistry: a case study of Penna-Chitravathi river basins in southern India. Environ Monit Assess 170:365–382. doi:10.1007/s10661-009-1239-4 CrossRefGoogle Scholar
  50. Rekha, P.N., Ravichandran, P., Gangadharan, R., Bhatt, J.H., Panigrahi, A., Pillai, S.M., Jayanthi, M., 2013. Assessment of hydrogeochemical characteristics of groundwater in shrimp farming areas in coastal Tamil Nadu, India. Aquaculture International 1137–1153. doi:10.1007/s10499-012-9618-1
  51. Retnam A, Zakaria MP, Juahir H, Aris AZ, Zali MA, Kasim MF (2013) Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia. Mar Pollut Bull 69:55–66. doi:10.1016/j.marpolbul.2013.01.009 CrossRefGoogle Scholar
  52. Saghravani, S.R., 2009. Prediction of phosphorus concentration in an unconfined aquifer using visual modflow.Google Scholar
  53. Sahib LY, Marandi A, Schüth C (2016) Strontium isotopes as an indicator for groundwater salinity sources in the Kirkuk region, Iraq. Sci Total Environ 562:935–945. doi:10.1016/j.scitotenv.2016.03.185 CrossRefGoogle Scholar
  54. Salifu A, Petrusevski B, Ghebremichael K, Buamah R, Amy G (2012) Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana. J Contam Hydrol 140-141:34–44. doi:10.1016/j.jconhyd.2012.08.002 CrossRefGoogle Scholar
  55. Saxena VK, Mondal NC, Singh VS (2004) Identification of sea-water ingress using strontium and boron in Krishna Delta, India. Curr Sci 86:586–590Google Scholar
  56. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WNA, Juahir H, Fakharian K (2014b) Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques, in Amol-Babol plain, Iran. TheScientificWorldJOURNAL 2014:419058. doi:10.1155/2014/419058 CrossRefGoogle Scholar
  57. Singaraja C, Chidambaram S, Anandhan P, Prasanna MV, Thivya C, Thilagavathi R, Sarathidasan J (2014) Determination of the utility of gr;oundwater with respect to the geochemical parameters: a case study from Tuticorin District of Tamil Nadu (India). Environ Dev Sustain 16:689–721. doi:10.1007/s10668-013-9502-9 CrossRefGoogle Scholar
  58. Singh AK, Raj B, Tiwari AK, Mahato MK (2013) Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region. India Environmental Earth Sciences:1225–1247. doi:10.1007/s12665-012-2209-7
  59. Singh CK, Shashtri S, Mukherjee S (2010) Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environmental Earth Sciences 62:1387–1405. doi:10.1007/s12665-010-0625-0 CrossRefGoogle Scholar
  60. Singh SK, Srivastava PK, Gupta M, Mukherjee S (2012) Modeling mineral phase change chemistry of groundwater in a rural-urban fringe. Water science and technology: a journal of the International Association on Water Pollution Research 66:1502–1510. doi:10.2166/wst.2012.338 CrossRefGoogle Scholar
  61. Stamatis G, Parpodis K, Filintas A, Zagana E (2011) Groundwater quality, nitrate pollution and irrigation environmental management in the Neogene sediments of an agricultural region in central Thessaly (Greece). Environmental Earth Sciences 64:1081–1105. doi:10.1007/s12665-011-0926-y CrossRefGoogle Scholar
  62. Sultan K (2012) Hydrochemistry and baseline values of major and trace elements in tropical surface waters of the Terengganu River (Malaysia). Water Int 37:1–15. doi:10.1080/02508060.2012.644925 CrossRefGoogle Scholar
  63. Sultan K, Shazili NA (2009) Distribution and geochemical baselines of major, minor and trace elements in tropical topsoils of the Terengganu River basin, Malaysia. J Geochem Explor 103:57–68. doi:10.1016/j.gexplo.2009.07.001 CrossRefGoogle Scholar
  64. Swarna Latha P, Nageswara Rao K (2012) An integrated approach to assess the quality of groundwater in a coastal aquifer of Andhra Pradesh, India. Environmental Earth Sciences 66:2143–2169. doi:10.1007/s12665-011-1438-5 CrossRefGoogle Scholar
  65. Tirumalesh K, Shivanna K, Sriraman AK, Tyagi AK (2010) Assessment of quality and geochemical processes occurring in groundwaters near central air conditioning plant site in Trombay, Maharashtra, India. Environ Monit Assess 163:171–184. doi:10.1007/s10661-009-0825-9 CrossRefGoogle Scholar
  66. Triki I, Trabelsi N, Zairi M, Dhia HB (2013) Multivariate statistical and geostatistical techniques for assessing groundwater salinization in Sfax, a coastal region of eastern Tunisia. Desalin Water Treat:1–10. doi:10.1080/19443994.2013.803937
  67. Uyan M, Cay T (2013) Spatial analyses of groundwater level differences using geostatistical modeling. Environ Ecol Stat 20:633–646. doi:10.1007/s10651-013-0238-3 CrossRefGoogle Scholar
  68. Venugopal T, Giridharan L, Jayaprakash M (2008) Groundwater quality assessment using chemometric analysis in the Adyar River, South India. Arch Environ Contam Toxicol 55:180–190. doi:10.1007/s00244-007-9117-y CrossRefGoogle Scholar
  69. Wang S (2013) Groundwater quality and its suitability for drinking and agricultural use in the Yanqi Basin of Xinjiang Province, Northwest China. Environ Monit Assess 185:7469–7484. doi:10.1007/s10661-013-3113-7 CrossRefGoogle Scholar
  70. Wetzelhuetter, C., 2013. Groundwater in the coastal zones of Asia-Pacific, volume 7. ed. Springer Dordrecht Heidelberg New York London.Google Scholar
  71. Yimit H, Eziz M, Mamat M, Tohti G (2011) Variations in groundwater levels and salinity in the Ili River Irrigation Area, Xinjiang, Northwest China: a geostatistical approach. International Journal of Sustainable Development & World Ecology 18:55–64. doi:10.1080/13504509.2011.544871 CrossRefGoogle Scholar
  72. Zhou Z, Zhang G, Yan M, Wang J (2012) Spatial variability of the shallow groundwater level and its chemistry characteristics in the low plain around the Bohai Sea, North China. Environ Monit Assess 184:3697–3710. doi:10.1007/s10661-011-2217-1 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2017

Authors and Affiliations

  • Zahidi Hamzah
    • 1
  • Ahmad Zaharin Aris
    • 2
  • Mohammad Firuz Ramli
    • 2
  • Hafizan Juahir
    • 3
  • Tahoora Sheikhy Narany
    • 2
  1. 1.HeadquartersMinerals and Geoscience Department MalaysiaKuala LumpurMalaysia
  2. 2.Faculty of Environmental Studies, Department of Environmental SciencesUniversiti Putra MalaysiaSelangorMalaysia
  3. 3.East Coast Environmental Research InstituteUniversiti Sultan Zainal AbidinKuala TerengganuMalaysia

Personalised recommendations