Skip to main content
Log in

Assessment of proposed approaches for bathymetry calculations using multispectral satellite images in shallow coastal/lake areas: a comparison of five models

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Bathymetric information for shallow coastal/lake areas is essential for hydrological engineering applications such as sedimentary processes and coastal studies. Remotely sensed imagery is considered a time-effective, low-cost, and wide-coverage solution for bathymetric measurements. This study assesses the performance of three proposed empirical models for bathymetry calculations in three different areas: Alexandria port, Egypt, as an example of a low-turbidity deep water area with silt-sand bottom cover and a depth range of 10.5 m; the Lake Nubia entrance zone, Sudan, which is a highly turbid, unstable, clay bottom area with water depths to 6 m; and Shiraho, Ishigaki Island, Japan, a coral reef area with varied depths ranging up to 14 m. The proposed models are the ensemble regression tree-fitting algorithm using bagging (BAG), ensemble regression tree-fitting algorithm of least squares boosting (LSB), and support vector regression algorithm (SVR). Data from Landsat 8 and Spot 6 satellite images were used to assess the performance of the proposed models. The three models were used to obtain bathymetric maps using the reflectance of green, red, blue/red, and green/red band ratios. The results were compared with corresponding results yielded by two conventional empirical methods, the neural network (NN) and the Lyzenga generalised linear model (GLM). Compared with echosounder data, BAG, LSB, and SVR results demonstrate higher accuracy ranges from 0.04 to 0.35 m more than Lyzenga GLM. The BAG algorithm, producing the most accurate results, proved to be the preferable algorithm for bathymetry calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Berk A, Bernstein L, Anderson G, Acharya P, Robertson D, Chetwynd J, Adler S (1998) MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens Environ 65(3):367–375. doi:10.1016/S0034-4257(98)00045-5

    Article  Google Scholar 

  • Bramante JF, Raju DK, Sin TM (2013) Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters. Int J Remote Sens 34(6):2070–2088. doi:10.1080/01431161.2012.734934

    Article  Google Scholar 

  • Brando V, Anstee J, Wettle M, Dekker A, Phinn S, Roelfsema C (2009) A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sens Environ 113(4):755–770. doi:10.1016/j.rse.2008.12.003

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140. doi:10.1023/A:1018054314350

    Google Scholar 

  • Casale P, Pujol O, Radeva P (2011) Embedding random projections in regularized gradient boosting machines. In ensembles in machine learning applications. Springer, Berlin Heidelberg, pp 201–216. doi:10.1007/978-3-642-22910-7_12

    Google Scholar 

  • Ceyhun Ö, Yalçın A (2010) Remote sensing of water depths in shallow waters via artificial neural networks. Estuar Coast Shelf Sci 89(1):89–96. doi:10.1016/j.ecss.2010.05.015

    Article  Google Scholar 

  • Chust G, Grande M, Galparsoro I, Uriarte A, Borja A (2010) Capabilities of the bathymetric hawk eye LiDAR for coastal habitat mapping: a case study within a Basque estuary. Estuarine Coastal and Shelf Science 89(3):200–213. doi:10.1016/j.ecss.2010.07.002

    Article  Google Scholar 

  • Clark R (2013) A MATLAB Implementation of Support Vector Regression (SVR). Available on http://www.mathworks.com/matlabcentral/fileexchange/43429-support-vector-regression. Accessed 20 Feb 2015

  • Collin A, Nadaoka K, Nakamura T (2014) Mapping VHR water depth, seabed and land cover using Google earth data. ISPRS Int J Geo-Information 3(4):1157–1179. doi:10.3390/ijgi3041157

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. doi:10.1111/j.1747-0285.2009.00840.x

    Google Scholar 

  • Corucci L (2011) Approaching bathymetry estimation from high resolution multispectral satellite images using a neuro-fuzzy technique. J Appl Remote Sens 5(1):53515 . doi:10.1117/1.35691251-15

    Article  Google Scholar 

  • Doxani G, Papadopoulou M, Lafazani P, Pikridas C, Tsakiri M (2012) Shallow-water bathymetry over variable bottom types using multispectral worldview-2 image. ISPRS – Int Arch Photogramm, Remote Sens Spat Inf Sci XXXIX-B8:159–164. doi:10.5194/isprsarchives-XXXIX-B8-159-2012

    Article  Google Scholar 

  • Farag A, Mohamed R (2004) Regression using support vector machines : basic foundations. Louisville Universtiy. pp. 1–17

  • Galar M, Fern A, Barrenechea E, Bustince H (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst, Man, Cybernetics—Part C: Appl Rev 42(4):463–484. doi:10.1109/TSMCC.2011.2161285

    Article  Google Scholar 

  • Gao J (2009) Bathymetric mapping by means of remote sensing : methods, accuracy and limitations. Prog Phys Geogr 33(1):103–116. doi:10.1177/0309133309105657

    Article  Google Scholar 

  • Gentle J, Härdle W, Mori Y (2012) Generalized linear models. In handbook of computational statistics: concepts and methods, (2nd ed.) Springer handbooks of computational statistics. Springer, Berlin Heidelberg, pp 681–709

    Google Scholar 

  • Ghimire B, Rogan J, Rodriguez V, Panday P, Neeti N (2012) An evaluation of bagging, boosting, and random forests for land-cover classiication in cape cod ,Massachusetts, USA. GISci Remote Sens 5(5):623–643. doi:10.2747/1548-1603.49.5.623

    Article  Google Scholar 

  • Gholamalifard M, Kutser T, Esmaili A, Abkar A, Naimi B (2013) Remotely sensed empirical modeling of bathymetry in the southeastern Caspian Sea. Remote Sens 5(6):2746–2762. doi:10.3390/rs5062746

    Article  Google Scholar 

  • Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993. doi:10.1109/72.329697

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning data mining, inference, and prediction. Springer series in statistics, 2nd edn. Springer Series in Statistics, Stanford, California. doi:10.1007/b94608

    Google Scholar 

  • Hedley JD, Harborne AR, Mumby PJ (2005) Technical note: simple and robust removal of sun glint for mapping shallow-water benthos. Int J Remote Sens 26(10):2107–2112. doi:10.1080/01431160500034086

    Article  Google Scholar 

  • Ihler A (2012) Machine learning and data mining, ensembles of learners. Information and Computre Science, California University. Available on https://www.coursehero.com/file/7352307/10-ensembles/

  • Inoue A, Kilian L (2006) How useful is bagging in forecasting economic time series? A case study of U.S. CPI inflation. J Econ 130:273–306. doi:10.1198/016214507000000473

    Article  Google Scholar 

  • Karush W (1939) Minima of functions of several variables with inequalities as side constraints. Master thesis. Deptertment of Mathematics, University of Chicago. USA

  • Kay S, Hedley J, Lavender S (2009) Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths. Remote Sens 1(4):697–730. doi:10.3390/rs1040697

    Article  Google Scholar 

  • Kuhn HW, Tucker AW (1951) Nonlinear programming. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Second Berkeley Symposium on Mathematical Statistics and Probability. University of California, Berkeley, pp 481–492

    Google Scholar 

  • Kulkarni S, Kelkar V (2014) Classification of multispectral satellite images using ensemble techniques of bagging, boosting and ada- boost. In International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), pp. 253–258

  • Landsat 8 (2013) Using the USGS Landsat 8 product. Available on http://landsat.usgs.gov/Landsat8_Using_Product.php

  • Lesser MP, Mobley CD (2007) Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery. Coral Reefs 26(4):819–829. doi:10.1007/s00338-007-0271-5

    Article  Google Scholar 

  • Leu LG, Chang HW (2005) Remotely sensing in detecting the water depths and bed load of shallow waters and their changes. Ocean Eng 32(10):1174–1198. doi:10.1016/j.oceaneng.2004.12.005

    Article  Google Scholar 

  • Lyons M, Phinn S, Roelfsema C (2011) Integrating quickbird multi-spectral satellite and field data: mapping bathymetry, seagrass cover, seagrass species and change in Moreton Bay, Australia in 2004 and 2007. Remote Sens 3(12):42–64. doi:10.3390/rs3010042

    Article  Google Scholar 

  • Lyzenga DR (1985) Shallow-water bathymetry using combined Lidar and passive multispectral scanner data. Int J Remote Sens 6(1):115–125. doi:10.1080/01431168508948428

    Article  Google Scholar 

  • Lyzenga DR, Malinas NP, Tanis FJ (2006) Multispectral bathymetry using a simple physically based algorithm. IEEE Trans Geosci Remote Sens 44(8):2251–2259. doi:10.1109/TGRS.2006.872909

    Article  Google Scholar 

  • Mather P, Tso B (2009) Artificial neural networks. In Classification Methods for Remotely Sensed Data, Chapter 3, CRC Press. (2nd ed.), pp. 77–124. doi:10.1201/9781420090741

  • Mobley CD, Sundman LK, Davis CO, Bowles JH, Downes TV, Leathers RA, Montes MJ, Bissett WP, Kohler DD, Reid RP, Louchard EM, Gleason A (2005) Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Appl Opt 44(17):3576–3592. doi:10.1364/AO.44.003576

    Article  Google Scholar 

  • Moses S, Janaki L, Joseph S, Gomathi J, Joseph J (2013) Lake bathymetry from Indian remote sensing (P6-LISS III) satellite imagery using artificial neural network model. Lakes Reserv Res Manag 18(2):145–153. doi:10.1111/lre.12027

    Article  Google Scholar 

  • Pacheco A, Horta J, Loureiro C, Ferreira O (2015) Retrieval of nearshore bathymetry from Landsat 8 images: a tool for coastal monitoring in shallow waters. Remote Sens Environ 159:102–116. doi:10.1016/j.rse.2014.12.004

    Article  Google Scholar 

  • Platt JC (1998) Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods 185–208. doi: 10.1109/ISKE.2008.4731075

  • Poliyapram V, Raghavan V, Masumoto S, Johnson G (2014) Investigation of Algoritm to Estimate Shallow Water Bathymetry from Landsat-8 Images. In International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Danang, Vietnam. pp.1–5

  • Quinlan JR (2006) Bagging, boosting, and C4.5. Proceedings of the Thirteenth National Conference on Artificial Intelligence 1: 725–730

  • Ranganathan A (2004) The Levenberg-Marquardt algorithm. Honda research institute. Available on http://twiki.cis.rit.edu/twiki/pub/Main/AdvancedDipTeamB/the-levenberg-marquardt-algorithm.pdf

  • Razavi BS (2014) Predicting the trend of land use changes using artificial neural network and Markov chain model (case study: Kermanshah City). Res J Environ Earth Sci 6(4):215–226

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In collection. parallel distributed processing: explorations in the microstructure of cognition, (Vol 1). MIT Press, Cambridge, pp 318–362

    Google Scholar 

  • Salah M (2016) Determination of shallow water depths using inverse probability weighted interpolation: a hybrid system- based method. Int J Geoinformatics 12(1):45–55

    Google Scholar 

  • Sánchez-Carnero N, Aceña S, Rodríguez D, Couñago E, Fraile P, Freire J (2012) Fast and low-cost method for VBES bathymetry generation in coastal areas. Estuar Coast Shelf Sci 114:175–182. doi:10.1016/j.ecss.2012.08.018

    Article  Google Scholar 

  • Sánchez-Carnero N, Ojeda J, Rodríguez D, Marquez J (2014) Assessment of different models for bathymetry calculation using SPOT multispectral images in a high-turbidity area: the mouth of the Guadiana estuary. Int J Remote Sens 35(2):493–514. doi:10.1080/01431161.2013.871402

    Article  Google Scholar 

  • Smola A, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222. doi:10.1023/B:STCO.0000035301.49549.88

    Article  Google Scholar 

  • Stumpf R, Holderied K, Sinclair M (2003) Determination of water depth with high-resolution satellite imagery over variable bottom types. Limonology And Oceanography 48:547–556. doi:10.4319/lo.2003.48.1_part_2.0547

    Article  Google Scholar 

  • Su H, Liu H, Heyman W (2008) Automated derivation of bathymetric information from multi-spectral satellite imagery using a non-linear inversion model. Mar Geod 31:281–298. doi:10.1080/01490410802466652

    Article  Google Scholar 

  • Todd U, Chris C (2010) Radiometric use of WorldView-2 imagery technical note 1 WorldView-2 instrument description. Available on http://global.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_Imagery (1).pdf

  • Üstün B, Melssen W, Buydens L (2006) Facilitating the application of support vector regression by using a universal Pearson VII function based kernel. Chemom Intell Lab Syst 81(1):29–40. doi:10.1016/j.chemolab.2005.09.003

    Article  Google Scholar 

  • Vahtmäe E, Kutser T (2016) Airborne mapping of shallow water bathymetry in the optically complex waters of the Baltic Sea. J Appl Remote Sens 10(2):1–16. doi:10.1117/1.JRS.10.025012

    Article  Google Scholar 

  • Vapnik V (2000) The nature of statistical learning theory. Information science and statistics, 2nd edn. Springer-Verlag, New York, pp 267–290. doi:10.1007/978-1-4757-3264-1

    Book  Google Scholar 

  • Vapnik V, Chervonenkis A (1964) A note on one class of perceptrons. Autom Remote Control 25(1):112–120

    Google Scholar 

Download references

Acknowledgments

The first author would like to thank the Egypt-Japan University of Science and Technology (E-JUST) and JICA for their support and for offering the tools needed for this research. This work was supported by JSPS “Core-to-Core Program, B. Asia-Africa Science Platforms”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Mohamed or Mahmoud Salah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H., AbdelazimNegm, Salah, M. et al. Assessment of proposed approaches for bathymetry calculations using multispectral satellite images in shallow coastal/lake areas: a comparison of five models. Arab J Geosci 10, 42 (2017). https://doi.org/10.1007/s12517-016-2803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2803-1

Keywords

Navigation