Skip to main content
Log in

Thermobarometry in the Sarvian Fe-skarn deposit (Central Iran) based on garnet–pyroxene chemistry and fluid inclusion studies

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Sarvian Fe skarn deposit is located in the Urumieh–Dokhtar magmatic arc, western Iran. The Sarvian quartz diorite intruded the surrounding Permian to Tertiary limy formation, culminated in thermal metamorphism as well as skarnification in which the Sarvian deposit formed. Microthermometry studies in the Sarvian skarn deposit reveal two distinct inclusion groups; group A with medium–high temperature and hypersaline and group B with low–medium temperature and low salinity. Group A inclusions which are entrapped during formation of prograde are thought to be derived from the magmatic source. Fluid boiling and subsequent developing of hydraulic fracturing led to inflow and/or mixing of early magmatic fluids (group A) with circulating groundwater culminated in formation of low salinity and low temperature fluid inclusions (group B) during the formation of retrograde assemblage. Fluid inclusion thermometry reveals the formation temperature and the salinity of 300–370 °C and 31–33 wt% NaCl for the prograde stage and 180–230 °C and 1–15 wt% NaCl for the retrograde stage of skarnification at Sarvian skarn rocks. Fe-mineralization as well as hydrothermal minerals occurred during retrograde metasomatism. The estimated depth and pressure of occurrence for prograde stage are 1000–1200 m and 100–150 bars, and for retrograde stage, these are about 200 m and 50 bars, respectively. Garnet and pyroxene, as the main constituent minerals of prograde stage, are the most informative minerals offering a suitable tool to constrain the skarnification conditions. Garnets in the Sarvian deposit are mainly grossular and andradite, showing both normal and inverse zoning as the result of variation in their chemical composition. Such types of zoning represent alternation of high acidity oxidation and low acidity oxidation conditions that were prevailed on skarnification in the Sarvian prograde assemblage. Also, chemical composition of the Sarvian pyroxenes shows an alternation of high oxygen fugacity and low oxygen fugacity conditions for their formation. This is also supported by fluctuation of the ratios of andradite to grossular and diopside to hedenbergite, denoting to an obvious shifting that was prevailed between oxidizing and redox conditions during formation of prograde assemblage in the Sarvian. Garnet–pyroxene thermometry determines the formation temperature of prograde assemblage between 370 and 550 °C at Sarvian skarn rocks which is verified also by fluid inclusion thermometry. Decomposition of limestone by reaction of high-temperature hydrothermal fluids with carbonate host rock resulted in injection of CO2 into the Sarvian system that caused oxidation, changing Fe+2 to Fe+3 culminated in the magnetite deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Amidi SM, Emami MH, Michel R (1984) Alkaline character of Eocene volcanism in the middle part of Iran and its geodynamic situation. Geol Rundsch 73:917–932

    Article  Google Scholar 

  • Asadi S, Moore F, Zarasvandi A (2014) Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Sci Rev. doi:10.1016/j.earscirev.2014.08.001

    Google Scholar 

  • Barati M, Gholipoor M (2013) Study of REE behaviors, fluid inclusions, and O, S stable isotopes in Zafar-abad iron skarn deposit, NW Divandareh, Kurdistan province. Journal of Economic Geology 6(2):235–257in Persian

    Google Scholar 

  • Barnes HL (1997) Geochemistry of hydrothermal ore deposits. Wiley, New Jersey, p. 780

    Google Scholar 

  • Beiranvand Pour A, Hashim M (2012) Identifying areas of high economic potential copper mineralization using ASTER data in the Urumieh–Dokhtar Volcanic Belt, Iran. Adv Space Res 49:753–769

    Article  Google Scholar 

  • Berberian M, King GC (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Brown PE, Essene JE (1985) Activity variations attending tungsten skarn formation, Pine Creek, California. Contrib Mineral Petrol 89:358–369

    Article  Google Scholar 

  • Canet C, Alfonso P, Melgarejo JC, Fallick AE (2003) Origin of the mineralizing fluids from the Carboniferous sedex deposits of L’Alforja (SW Catalonian Coastal Ranges, Spain). J Geochem Explor 78(79):513–517

    Article  Google Scholar 

  • Cox DP (1986) Descriptive model of Fe skarn deposits, in Cox, D.P. and Singer, D.A., eds., Mineral deposit models: U.S., Geological Survey Bulletin, 1693, 94

  • Deer WA, Howie RA, Zussman J, (1992) An introduction to the rock forming minerals: Second edition, Longman Scientific and Technical, 696p

  • Drummond SE, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80:126–147

    Article  Google Scholar 

  • Dziggel A, Wulff K, Kolb J, Meyer FM, Lahaye Y (2009) Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet: evidence from the Navachab gold deposit, Namibia. Journal of. Chem Geol 262:262–276

    Article  Google Scholar 

  • Einaudi MT, Burt DM (1982) Introduction, terminology, classification and composition of skarn deposit. Econ Geol 77(4):445–455

    Article  Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ, (1981) Skarn deposits: Economic Geology 75th Anniversary, p. 317–391

  • Esna-Ashari A, Tiepolo M, Vlizade MV, Hassanzadeh J (2012) Geochemistry and Zircon U-Pb geochronology of Aligudarz granitoid complex, Sanandaj-Sirjan Zone, Iran, Journal of Asian Earth Science, 43, 11–22

  • Ghalamghash J, Babakhani A (2000) The Kahak 1:100000 geological map. Geological and mineral exploration center of Iran

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Ghorbani M (2006) Economic geology of mineral and natural resources of Iran, Tehran: Arian Zamin Publication, p 490 (in Persian)

  • Guilbert JM, Lowell JD (1974) Variations in zoning patterns in porphyry copper deposits. Can Inst Mining Metal Bull 67:99–109

    Google Scholar 

  • Jamali H, Dilek Y, Daliran F, Yaghubpur A, Mehrabi B (2010) Metallogeny and tectonic evolution of the Cenozoic Ahar–Arasbaran volcanic belt, northern Iran. Int Geol Rev 52:608–630

    Article  Google Scholar 

  • Jamtviet B (1991) Oscillatory zonation patterns in hydrothermal grossular-andradite garnet, nonlinear behavior in regions of immiscibility. Am Mineral 76:319–1327

    Google Scholar 

  • Kananian A, Sarjoughian F, Nadimi A, Ahmadian J, Ling W (2014) Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh–Dokhtar Magmatic Arc (Iran): implications for source regions and magmatic evolution. J Asian Earth Sci 04:026. doi:10.1016/j.jseaes

    Google Scholar 

  • Kohn MJ, Spear FS (2000) Retrograde net transfer reaction insurance for pressure–temperature estimates. J Geol 28:1127–1130

    Article  Google Scholar 

  • Konzett J, Krenn K, Hauzenberger CH, Whitehouse M, Hoinkes G (2011) High pressure tourmaline formation and fluid activity in Fe–Ti-rich eclogites from the Kreuzeck Mountains, Eastern Alps, Austria. J Petrol 56(11):12–21

    Google Scholar 

  • Krough EJ (1988) The garnet-clinopyroxene Fe-Mg geothermometer—a reintrepration of existing experimental data. Mineral Petrol 99:44–48

    Article  Google Scholar 

  • Kwak TAP, Tan TH (1981) The geochemistry of zoning in the skarn mineral at the King Island (Dolphine) mine. Econ Geol 76:468–497

    Article  Google Scholar 

  • Lentz DR (2000) Mass-balance consideration in mineralized skarn systems: implication for permeability evolution and carbonate mobility. Available on http://www.cseg.ca/ conferences/2000/1037

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Mazurov MP (1980) The formation temperature of the skarn-magnetite deposits of fold regions. In Termobarogeokhimiyai rudogenez (Thermobarogeochemistry and Ore Genesis) 04, 209

  • Meinert LD (1992) Skarn zonation and fluid evolution in the Groundhog Mine, Central mining district, New Mexico. Econ Geol 82:523–545

    Article  Google Scholar 

  • Meinert LD (1997) Application of skarn deposit zonation models to mineral exploration. Explor Min Geol 6:185–208

    Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Morimoto N, Fabrise J, Ferguson A, Ginzburg IV, Ross M, Seifert FA, Zussman J, Akoi K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 173:1123–1133

    Google Scholar 

  • Nakamura D, Hirajima T (2005) Experimental evaluation of garnet clinopyroxene geothermometry as applied to eclogites. Contrib Mineral Petrol 150:581–588. doi:10.1007/s00410-005-0023-x

    Article  Google Scholar 

  • Nosrati L (2011) Statistic investigations and estimation of the Sarvian iron deposit. Exploration project (in Persian)

  • Orgun Y, Gultekin AH, Onal A (2005) Geology, mineralogy and fluid inclusion data from the Arapucan Pb–Zn–Cu–Ag deposit, Canakkale, Turkey. J Asian Earth Sci 25:629–642

    Article  Google Scholar 

  • Pertsev NN (1977) Vysokotemperaturnyy metamorfizm i metasomatizm karbonatnykh porod (High-temperature metamorphism and metasomatism of carbonate rocks). Nauka Press, Moscow

    Google Scholar 

  • Powell R (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. Journal of Metamorphic Geol 3:231–243

    Article  Google Scholar 

  • Raheim A, Green DH (1974) Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene. Mineral Petrol 48:279–203

    Google Scholar 

  • Ray GE, Webster ICL (1990) An overview of skarn deposits: Ore deposits, tectonics, and metallogeny in the Canadian Cordillera, Geological Society of Canada short course notes, p. 7-1-7-55

  • Robb LJ (2005) Introduction to ore-forming processes. Blackwell Publishing, Oxford, p 386

  • Sato K (1980) Tungsten skarn deposit of the Fujigatani mine, southwest Japan. Econ Geol 75:1066–1082

    Article  Google Scholar 

  • Schweitzer EL, Papike JJ, Bence AE (1974) Statistical analysis of clinopyroxenes from deep-sea basalts. Am Mineral 64:501–513

    Google Scholar 

  • Shahabpour J (2006) Economic geology, Kerman: Bahonar University, 500

  • Shahzeidi M, Moaeed M, Moazen S, Ahmadian J (2008) Mineralogy thermobarometery and magmatic chain determination of Kuh dom igneous rocks, Ardestan. Journal of Iranian Crystallography and Mineralogy Vol.3:485–504

    Google Scholar 

  • Sokolov GA, Grigor’ev VM (1977) Deposits of iron, in Smirnov, V.I., ed., Ore deposits of the U.S.S.R.: London, Pittman, 1, 7–113

  • Torkian A, Salehi N (2015) Mineral chemistry of pyroxenes and geothermobarometry of the basic rocks, NE-Qorveh (Kurdistan). Iranian Journal of Crystallography and Mineralogy 22(4):659–670

    Google Scholar 

  • Urabe T (1985) Aluminous granite as a source magma of hydrothermal ore deposits: an experimental study. Econ Geol 80:148–157

    Article  Google Scholar 

  • Vlasova DK, Podlesskiy KV, Kudrya PF, Boronikhin VA, Muravitskaya GN (1985) Zoning in garnets from skarn deposits. Int Geol Rev 27(4):465–482

    Article  Google Scholar 

  • Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272

    Article  Google Scholar 

  • Yang YF, Chen YJ, Pirajno F, Li F (2015) Evolution of ore fluids in the Donggou giant porphyry Mo system, East Qinling, China, a new type of porphyry Mo deposit: evidence from fluid inclusion and H–O isotope systematics. Ore Geol Rev 65:148–164

    Article  Google Scholar 

  • Yucel-Ozturk, Helvaci C, Satir M (2005) Genetic relations between skarn mineralization and petrogenesis of the Evciler granitoid, KazdaÛ, Çanakkale, Turkey and comparison with world skarn granitoids. Turkish Journal of Earth Sciences (Turkish J Earth Sci) 14:255–280

    Google Scholar 

  • Zamanian H, Ahmad nejad F, Zarasvandi A (2015) Mineralogical and geochemical investigation of the Mombi bauxite deposit, Zagros Mountains, Iran. Chemie Erde-geochemistry. htttp://dx.doi.org/10.1016/j.chember.2015.10.001

  • Zarasvandi A, Sameti M, Sadeghi M, Pourkaseb H, Rastmanesh F (2012) The Gol-e-Zard Zn-Pb deposit, Lorestan province, Iran: a metamorphosed SEDEX deposit. Acta Geol Sin 88(1):142–153

    Article  Google Scholar 

  • Zarasvandi A, Rezaei M, Raith J, Lentz D, Azimzadeh A-M, Pourkaseb H (2015) Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran. J Asian Earth Sci 111:175–191

    Article  Google Scholar 

  • Zaw K, Singoyi B (2000) Formation of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: evidence from mineral chemistry and stable isotopes. EconGeol 95:1215–1230

    Google Scholar 

  • Zhang YG, Frantz JD (1987) Determination of homogenization temperatures and densities of supracritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions. Chem Geol 64:35–350

    Article  Google Scholar 

  • Zharikov VA (1968) Skarn deposits In Genezis endogennykh rudnykh mestorozhdeniy (Origin of the endogenic ore deposits). Nedra Press, Moscow, pp. 220–301

    Google Scholar 

  • Zhou T, Yang F, Yuc S, Liu X, Zhang X, Fan Y (2007) Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn and vein-type deposits, Anhui province, South China. Ore Geol Rev 31:279–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zamanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamanian, H., Sameti, M., Pazoki, A. et al. Thermobarometry in the Sarvian Fe-skarn deposit (Central Iran) based on garnet–pyroxene chemistry and fluid inclusion studies. Arab J Geosci 10, 54 (2017). https://doi.org/10.1007/s12517-016-2785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2785-z

Keywords

Navigation