Comparison of regression-based and combined versions of Inverse Distance Weighted methods for spatial interpolation of daily mean temperature data

  • Emine Tanır Kayıkçı
  • Selma Zengin Kazancı
Original Paper


This paper focuses on the performance of two regression-based and one Inverse Distance Weighted (IDW) and two combined versions of IDW methods for interpolation of daily mean temperature at the Black Sea Region of Turkey. Simple linear regression (SLR) and multiple linear regression (MLR) are used as regression-based methods. Combinations of IDW with TLR (temperature lapse rate) and gradient plus inverse distance squared (GIDS) are used as combined versions of IDW. This study targets to compare five spatial interpolation methods based on RMSE (root-mean-square error) statistics of interpolation errors for daily mean temperatures from 1981 to 2012. In order to compare the interpolation errors of the five methods, the leave-one-out cross-validation method was applied over long periods of 32 years on 52 different sites. The algorithms of the five interpolation methods’ codes were written in MATLAB by the authors of the paper.


Inverse Distance Weighted Temperature lapse rate Combined version of IDW with TLR Gradient plus inverse distance squared (GIDS) Simple linear regression (SLR) Multiple linear regression (MLR) 



The authors would like to thank the Turkish State Meteorological Service for providing the data for this study.


  1. Attorre F, Alfo M, De Sanctis M, Francesconi F, Bruno F (2009) Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int J Climatol 27:1825–1843. doi: 10.1002/joc.1495 CrossRefGoogle Scholar
  2. Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, New York, p. 190Google Scholar
  3. Davis BM (1987) Uses and abuses of cross-validation in geostatistics. Math Geol 19(3):241–248. doi: 10.1007/BF00897749 CrossRefGoogle Scholar
  4. Demircan M, Arabacı H, Bölük E, Akçakaya A, Ekici M (2013) Climatological normals: relationship between three temperature normals and its spatial distribution. III, Turkish Climate Change Congre (TİKDEKGoogle Scholar
  5. Dodson R, Marks D (1997) Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim Res 8:1–20. doi: 10.3354/cr008001 CrossRefGoogle Scholar
  6. Franke R, Neilson G (1980) Smooth interpolation of large sets of scattered data. Int J Numer Meth Eng 15:1691–1704. doi: 10.1002/nme.1620151110 CrossRefGoogle Scholar
  7. Garen DC, Marks D (2005) Spatially distributed energy balance snowmelt modeling in a mountainous river basin: estimation of meteorological inputs and verification of model results. J Hydrol 315:126–153. doi: 10.1016/j.jhydrol.2005.03.026 CrossRefGoogle Scholar
  8. Güler and Kara (2014) Comparison of different interpolation techniques for modelling temperatures in Middle Black Sea Region, JAFAG, 61–71 doi: 10.13002/jafag 714.
  9. Hunter RD, Meentemeyer RK (2005) Climatologically aided mapping of daily precipitation and temperature. J Appl Meteorol 44(10):1501–1510. doi: 10.1175/JAM2295.1 CrossRefGoogle Scholar
  10. Kenawy AE, Lopez-Moreno JI, Vicente-Serrano S, Morsi F (2010) Climatological modeling of monthly air temperature and precipitation in Egypt through GIS techniques. Clim Res 42(2):161–176. doi: 10.3354/cr00871 CrossRefGoogle Scholar
  11. Kilibarda M, Tadić MP, Hengl T, Luković J, Bajat B (2015) Global geographic and feature space coverage of temperature data in the context of spatio-temporal interpolation. Spat Stat. doi: 10.1016/j.spasta.2015.04.005 Google Scholar
  12. Kurtzman D, ve Kadmon R (1999) Mapping of temperature variables in Israel: a comparison of different interpolation methods. Clim Res:33–43. doi: 10.3354/cr013033
  13. Li J and Heap A D (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia Record 2008/023., GPO Box 378, Canberra, ACT 2601, AustraliaGoogle Scholar
  14. Liston G, Elder K (2006) A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J Hydrometeorol 7(2):217–234. doi: 10.1175/JHM486.1 CrossRefGoogle Scholar
  15. Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci 34(9):1044–1055. doi: 10.1016/j.cageo.2007.07.010 CrossRefGoogle Scholar
  16. Mahmoudi P, (2014) Mapping statistical characteristics of frosts in Iran, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W3, 2014 The 1st ISPRS International Conference on Geospatial Information Research, 15–17 November 2014, Tehran, Iran. doi: 10.5194/isprsarchives-XL-2-W3-175-2014
  17. Mair, A, and Fares A (2011) Comparison of rainfall interpolation methods in a mountainous region of a tropical island. J Hydraul Eng-Asce. 371–383 doi:  10.1061/(ASCE)HE.1943-5584.0000330
  18. Moore DS, McCabe GP, Craig BA (2009) Introduction to the practice of statistics. W. H, Freeman and Company, United States of AmericaGoogle Scholar
  19. Nalder IA, Wein RW (1998) Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agric For Meteorol 92(4):211–225Google Scholar
  20. Ninyerola M, Pons X, Roure JM (2007) Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theor Appl Climatol 89:195–209. doi: 10.1007/s00704-006-0264-2 CrossRefGoogle Scholar
  21. Núñez-Riboni I, Anna A (2015) Monthly maps of optimally interpolated in situ hydrography in the North Sea from 1948 to 2013. J MARINE SYST. doi: 10.1016/j.jmarsys.2015.06.003 Google Scholar
  22. Price DT, McKenney DW, Nalder IA, Hutchinson MF, Kesteven JL (2000) A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agric Forest Meteorol 101:81–94CrossRefGoogle Scholar
  23. Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J Clim 16(7):1032–1046. doi: 10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2 CrossRefGoogle Scholar
  24. Saffari M, Yasrebi F, Sarikhani R, Gazni M (2009) Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Research Journal of biological Sciences 4Google Scholar
  25. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference: 517–524, doi:  10.1145/800186.810616.
  26. Song J, DePinto JV (1999) A GIS-based data query system. Presented at the International Association for Great Lakes Research (IAGLR) Conference, Windsor, Ontario.Google Scholar
  27. Stahl K, Moore RD, Floyer JA, Asplin MG, McKendry IG (2006) Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric For Meteorol 2006:224–236. doi: 10.1016/j.agrformet.2006.07.004 CrossRefGoogle Scholar
  28. Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190(3–4):214–251. doi: 10.1016/S0022-1694(96)03128-9 CrossRefGoogle Scholar
  29. URL1. Station information database. Accessed 23 September 2014
  30. Vicente-Serrano SM, Lanjeri S, Lopez-Moreno JI (2007) Comparison of different procedures to map reference evapotranspiration using geographical information systems and regression-based techniques. Int J Climatol 27:1103–1118. doi: 10.1002/joc.1460 CrossRefGoogle Scholar
  31. Willmott CJ, Matsuura K (1995) Smart interpolation of annually averaged air temperature in the United States. J Appl Meteorol 34(12):2577–2586. doi: 10.1175/1520 0450(1995)034%3C2577:SIOAAA%3E2.0.CO;2 CrossRefGoogle Scholar
  32. Wang S, Huang GH, Lin QG, Li Z, Zhangand H, Fan YR (2014) Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada. Int J Climatol 34:3745–3751. doi: 10.1002/joc.3941 CrossRefGoogle Scholar
  33. Xu W, Zou Y, Zhang G, Linderman M (2014) A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province. China Int J Climatol doi: 10.1002/joc.4180 Google Scholar
  34. Zengin Kazancı S (2014) A study for applications of spatial interpolation methods: case study for daily mean temperature data of Black Sea Region of Turkey, Master of Science Thesis, Thesis Supervisor: Emine Tanır Kayıkçı, Karadeniz Technical University, Natural Science Institute, 2014, Trabzon, Turkey (in Turkish)Google Scholar

Copyright information

© Saudi Society for Geosciences 2016

Authors and Affiliations

  • Emine Tanır Kayıkçı
    • 1
  • Selma Zengin Kazancı
    • 1
  1. 1.Department of Geomatics EngineeringTrabzonTurkey

Personalised recommendations