Skip to main content
Log in

Geochronological and mineral chemical constraints on the age and formation conditions of the leucogranite in the Mawat ophiolite, Northeastern of Iraq: insight to sync-subduction zone granite

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Daraban leucogranite occurs as cactus-like dykes hosted in serpentinized harzburgite in the mantle section of the Mawat ophiolite, Kurdistan region, northeastern Iraq. It has a primary mineral assemblage of quartz + orthoclase + albite + tourmaline + muscovite, with Mg-rich biotite, phlogopite, zircon, ilmenite–titanohematite exsolution, xenotime, and monazite as the most abundant accessory minerals. New laser ablation inductively coupled plasma mass spectrometry U–(Th)–Pb dating of zircon, monazite, and xenotime reveal a single episode of leucogranite magmatism in the Mawat ophiolite at 92.6 ± 1.2 Ma. These data indicate that the intrusion ages of leucogranite rocks postdate the 105 ± 5 Ma formation age of Mawat ophiolite obtained by K–Ar hornblende method. The leucogranite magma originated by anatexis of pelagic sediments during the late Cretaceous subduction in the Neo-Tethys Ocean, leading to the formation of the Mawat ophiolite as part of the main Zagros ophiolite belt in Iraq and Iran. Tourmaline and biotite from leucogranite dykes were examined regarding their microchemistry and formation environment. Electron microprobe studies show that the tourmalines form mainly dravite–schorl solid solutions with a tendency to schorl compositions. Biotites in the leucogranite have bimodal composition represents by phlogopite and Mg-rich biotite. The tourmaline and biotite compositions, as well as field observations, appear to exclude a late-stage magmatic differentiation origin for the leucogranite. A probable source is S-type granitic magma rich in boron that resulted from the anatexis of silica-rich Ca-poor subduction wedge sediments like those of the Qulqula group. This intruded the ophiolites during the subduction stage. Calculated biotite and Fe–Ti oxide equilibria indicate that the parent magma formed along the subduction zone and solidified in the mantle wedge at a pressure 3.8–4.2 kbar, equivalent to 12.5–13.8 km depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdel-Rahman AM (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J Petrol. 35:525–541

    Article  Google Scholar 

  • Abbot RN, Clarke BD (1979) Hypothetical liquidus relationships in the subsystem Al2O3–FeO–MgO projected from quartz, alkali feldspar and plagioclase for (H2O) < 1. Can Mineral. 17:549–560

    Google Scholar 

  • Abdulla KL (2015) Petrogenesis and geochronology of plagiogranite rocks in Penjween ophiolite, Kurdistan region, NE Iraq. Unpublished M.Sc Thesis, University of Sulaimani, p 92

  • Aleinikoff JN, Schenck WS, Plank MO, Srogi LA, Fanning CM, Sandra L, Kamo SL, Bosbyshell H (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Bull. Geol. Soc. Am. 118:39–64

    Article  Google Scholar 

  • Aldiss DT (1978) Granitic rocks of ophiolites. Ph.D Thesis, Open University, UK

  • Ali SA, Buckman S, Aswad KJ, Jones BG, Ismail SA, Nutman AP (2013) The tectonic evolution of a Neo-Tethyan (Eocene–Oligocene) island-arc (Walash and Naopurdan groups) in the Kurdistan region of the Northeast Iraqi Zagros Suture Zone. Isl Arc. 22:104–125

    Article  Google Scholar 

  • Al-Mehidi HM (1975) Tertiary nappe in Mawat range. J. Geol. Soc. Iraq. VIII:31–44

    Google Scholar 

  • Al-Saffi IK, Hadi A, Aqrawi AM (2012) Petrology of gabbroic rocks of Mawat ophiolite complex (central sector) NE Iraq. Iraqi bulletin of geology and mining. 8:65–85

    Google Scholar 

  • Aswad KJ, Elias EM (1988) Petrogenesis, geochemistry and metamorphism of spilitized subvolcanic rocks, Mawat ophiolite complex, NE Iraq. Ofioliti. 13:95–109

  • Aydin F, Karsli O, Sadiklar M (2003) Mineralogy and chemistry of biotites from eastern pontide granitoid rocks, NETurkey: Some Petrological Implications for Granitoid Magmas. Chemie der Erde. 63:163–182

    Article  Google Scholar 

  • Aziz NR, Elias EM, Aswad KJ (2011) Rb-Sr and Sm-Nd isotopes study of serpentinites and their impact on the tectonic setting of Zagros suture zone, NE Iraq. Iraqi Bulletin of Geology and Mining. 7:67–75

    Google Scholar 

  • Azizi H, Hadi A, Asahara Y, Mohammed YO (2013) Geochemistry and geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast Iraq. Cen Eur J Geosci. 5:523–537

    Google Scholar 

  • Baziany MM (2014) Depositional systems and sedimentary basin analysis of the Qulqula Radiolarian Formation of the Zagros Suture Zone, Sulaimani Area, Iraqi Kurdistan Region. Unpublished Ph.D Thesis, University of Sulaimani, Iraq, p 198

  • Benard F, Moutou P, Pichavant M (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magma. J Geol. 93:271–291

    Article  Google Scholar 

  • Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics. 241:193–224

    Article  Google Scholar 

  • Berberian M, King GCP (1981) Toward a paleogeography and tectonic evolution of Iran. Can J Earth Sci. 18:210–265

    Article  Google Scholar 

  • Black LP, Kamo SL, et al. (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol. 205:115–140

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol. 5:310–357

    Article  Google Scholar 

  • Buick IS, Lana C, Gregory C (2011) A LA-ICP-MS and SHRIMP U/Pb age constraint on the timing of REE mineralisation associated with Bushveld granites. S Afr J Geol. 114:1–14

    Article  Google Scholar 

  • Burkhard DJM (1991) Temperature and redox path of biotite-bearing intrusives: a method of estimation applied to S- and I-type granites from Australia. Earth Planet Sci Lett. 104:89–98

    Article  Google Scholar 

  • Burkhard DJM (1993) Biotite crystallization temperatures and redox states in granitic rocks as indicator for tectonic setting. Geol Mijnbouw. 71:337–349

  • Cherniak DJ, Watson EB (2000) Pb diffusion in zircon. Chem Geol. 172:5–24

    Article  Google Scholar 

  • Cheilletz A, Féraud G, Giuliani G, Ruffet G (1993) Emerald dating through 40Ar/39Ar step–heating and laser spot analysis of syngenetic phlogopite. Earth Planet Sci Lett. 120:473–485

    Article  Google Scholar 

  • Coleman RG, Peterman ZE (1975) Oceanic plagiogranite. J Geophy Res 80:1099–1108

    Article  Google Scholar 

  • Condamine P, Médard E (2014) Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism. Earth Planet Sci Lett. 397:80–92

    Article  Google Scholar 

  • Cornell DH, Brander L, Zack T, Kristoffersen M (2013) The Plat Sjambok Anorthosite and its tonalitic country rocks: Mesoproterozoic pretectonic intrusions in the Kaaien Terrane, Namaqua–Natal Province, Southern Africa. Int Geol Rev. 55:1471–1489

    Article  Google Scholar 

  • Cox J, Searle M, Pedersen R (1999) The petrogenesis of leucogranitic dykes intruding the northern Semail ophiolite, United Arab Emirates: field relationships, grochemistry and Sr/Nd isotope systematics. Contrib Mineral Petrol. 137:67–287

    Article  Google Scholar 

  • Dodson MH, Mcclelland-Brown E (1985) Isotopic and paleomagnetic evidence for rates of cooling, uplift and erosion. Geological Society Memorier. 10:315–325

    Article  Google Scholar 

  • Dyar MD, Taylor ME, Lutz TM, Francis CA, Guidotti CV, Wise M (1998) Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence and site occupancy. Am Mineral. 83:848–864

    Article  Google Scholar 

  • Dymek RF (1983) Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Am Mineral. 68:880–899

    Google Scholar 

  • Etsuo U, Sho E, Mitsutosh M (2007) Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology. 57:47–56

    Article  Google Scholar 

  • Forster MD (1960) Interpretation of the composition of tri octahedral mica. US Geol Surv Prof Pap. 354:1–48

    Google Scholar 

  • Fuchs Y, Lagache M, Linares J (1998) Fe-tourmaline synthesis under different T and fO2 conditions. Am Mineral. 83:525–534

    Article  Google Scholar 

  • Fyfe W, McBirney A (1975) Subduction and the structure of andesite volcanic belts. Am J Sci. 275-A:285–297

    Google Scholar 

  • Gasquet D, Bertrand JM, Paquette JL, Lehmann J, Ratzov G, De Ascenção Guedes R, Tiepolo M, Boullier AM, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French western Alps: new U-Th-Pb and argon ages from the Lauzière massif. Bull Soc Géol France. 181:227–241

    Article  Google Scholar 

  • Haase KM, Freund S, Koepke J, Hauff F, Erdmann M (2015) Melts of sediments in the mantle wedge of the Oman ophiolite. Geol. 43:275–278

    Article  Google Scholar 

  • Hacker B, Mosenfelder JL, Gnos E (1996) Rapid emplacement of the Oman ophiolite: thermal and geochronologic constraints. Tectonics. 15:1230–1247

    Article  Google Scholar 

  • Hawthorne FC, Dirlam DM (2011) Tourmaline the indicator mineral: from atomic arrangement to Viking navigation. Elements. 7:307–312

    Article  Google Scholar 

  • Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral. 11:201–215

    Article  Google Scholar 

  • Heaman L, Parrish R (1991) U-Pb geochronology of accessory minerals. In: Heaman L, Ludden JN (eds) Short course handbook on applications of radiogenic isotope systems to problems in geology, Mineralogical Association of Canada, pp. 59–102

    Google Scholar 

  • Hermann J, Spandler C (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol. 49:717–740

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anovitz LM (eds) Boron: Mineralogy, Petrology and Geochemistry, Rev Mineral, vol 33, pp. 503–557

    Google Scholar 

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. Am Mineral. 70:1–15

    Google Scholar 

  • Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol. 27:293–305

    Google Scholar 

  • Ismail SA, Mirza T, Carr P (2010) Platinum-group elements geochemistry in podiform chromitites and associated peridotites of the Mawat ophiolite, northeastern Iraq. J Asian Earth Sci. 37:31–41

    Article  Google Scholar 

  • Jackson S, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol. 211:47–69

    Article  Google Scholar 

  • Jolliff BL, Papike JJ, Shearer CK (1986) Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Am Mineral. 71:472–500

    Google Scholar 

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys. doi:10.1029/1999GC000014

    Google Scholar 

  • Kareem HJ (2015) Mineralogy and geochemistry of felsic pegmatite from Mawat ophiolite, Kurdistan region, northeastern Iraq. Unpublished M.Sc Thesis, University of Sulaimani, p 151

  • Karim KH, Koyi H, Baziany MM, Hessami K (2011) Significance of angular unconformities between Cretaceous and Tertiary strata in the northwestern segment of the Zagros fold– thrust belt, Kurdistan Region, NE Iraq. Geol Mag. 148:925–939

    Article  Google Scholar 

  • Karaoğlan F, Parlak O, Klotzi U, Thoni M, Koller F (2012) U–Pb and Sm–Nd geochronology of the ophiolites from the SE Turkey. Implications for the Neotethyan evolution. Geodinamica Acta. 25:146–161

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Mineral Petrol. 146:414–432

    Article  Google Scholar 

  • Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbro. Contrib Mineral Petrol. 153:67–84

    Article  Google Scholar 

  • Koh JS, Yun SH (1999) The compositions of biotite and muscovite in the Yuksipryeong two-mica granite and its petrological meaning. Geosciences Journal. 3:77–86

    Article  Google Scholar 

  • Lalonde AE, Bernard P (1993) Composition and color of biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn Internal Zone of Wopmay Orogen, Northwest Territories. Can Mineral. 31:203–217

    Google Scholar 

  • Lattard D, Engelmann R, Kontny A, Sauerzapf U (2006) Curie temperatures of synthetic titanomagnetites in the Fe–Ti–O system: effects of compositions, crystal chemistry, and thermomagnetic methods. J Geophys Res 111:B12S28. doi:10.1029/2006JB004591

    Article  Google Scholar 

  • Lepage LD (2003) ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Comput Geosci. 29:673–678

    Article  Google Scholar 

  • London D (1999) Stability of tourmaline in peraluminous granite systems: the boron cycle from anatexis to hydrothermal aureoles. Eur J Mineral. 11:253–262

    Article  Google Scholar 

  • London D (2008) Pegmatites. Can Mineral Special Publication 10, p 368

  • Ludwig KR (2003) Isoplot/EX version 3.0, A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication

  • Martin RF, De Vito C (2005) The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Can Mineral. 43:2027–2048

    Article  Google Scholar 

  • Mohammad YO, Cornell DH, Qaradaghi JH, Mohammad FO (2014) Geochemistry and Ar–Ar muscovite ages of the Daraban Leucogranite, Mawat Ophiolite, Northeastern Iraq: implications for Arabia–Eurasia continental collision. J Asian Earth Sci. 86:151–165

    Article  Google Scholar 

  • Morgan GB, London D (1999) Crystallization of the little three layered pegmatite-aplite dike, Ramona District, California. Contrib Mineral Petr. 136:310–330

    Article  Google Scholar 

  • Mukasa S, Ludden J (1987) Uranium-lead isotopic ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance. Geol. 15:825–828

    Article  Google Scholar 

  • Nachit H, Ibhi A, Abia EH, Ohoud MB (2005) Discrimination between primary magmatic biotites, re-equilibrated biotites and neoformed biotites. C R Geosci. 337:1415–1420

    Article  Google Scholar 

  • Payne JL, Hand M, Barovich KM, Wade BP (2008) Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic. Aust J Earth Sci. 55:623–640

    Article  Google Scholar 

  • Rollinson H (2009) New models for the genesis of plagiogranites in the Oman Ophiolite. Lithos. 112:603–614

    Article  Google Scholar 

  • Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite–ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. J Petrol. 49:1161–1185

    Article  Google Scholar 

  • Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmas. J Petrol. 36:663–705

    Article  Google Scholar 

  • Shabani AA, Lalonde AE, Whalen JB (2003) Composition of biotite from granitic rocks of the Canadian Appalachian: a potential tectonomagmatic indicator? Can Mineral. 41:1381–1396

    Article  Google Scholar 

  • Shafaii Moghadam H, Stern RJ (2015) Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites. J Asian Earth Sci. 100:31–59

    Article  Google Scholar 

  • Slama J, Kosler J, et al. (2008) Plesovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol. 249:1–35

    Article  Google Scholar 

  • Speer JA (1984) Mica in igneous rocks. In: Bailey SW (ed) Micas. Rev Mineral Soc Am, vol 13, pp. 299–356

    Google Scholar 

  • Stern RA, Amelin Y (2003) Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chem Geol. 197:111–146

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev. Geophys. 40. doi:10.1029/2001RG000108

  • Tareen JAK, Keshava Prasad AV, Basavalingu B, Ganesha AV (1995) The effect of fluorine and titanium on the vapour-absent melting of phlogopite and quartz. Mineral Mag. 59:566–570

    Article  Google Scholar 

  • Tauxe L (2010) Essentials of Paleomagnetism. University of California Press, USA

    Google Scholar 

  • Tilton GR, Hopson CA, Wright JE (1981) Uranium–lead isotopic ages of the Samail ophiolite, Oman, with applications to Tethyan Ocean. J Geophy Res. 86:2763–2775

    Article  Google Scholar 

  • Torres-Ruiz J, Pesquera A, Gil-Crespo PP, Velilla N (2003) Origin and petrogenetic implications of tourmaline-rich rocks in the Sierra Nevada (Betic Cordillera, Southeastern Spain). Chem Geol. 197:55–86

    Article  Google Scholar 

  • Villaseca C, Barbero L (1994) Chemical variability of Al-Ti-Fe-Mg minerals in peraluminous granitoid rocks from central Spain. Eur J Mineral. 6:691–710

    Article  Google Scholar 

  • Whalen JB, Chappell BW (1988) Opaque mineralogy and mafic mineral chemistry of 1- and S-type granites of the Lachlan Fold belt, southeast Australia. Am Mineral. 73:281–296

    Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter. 19:1–23

    Article  Google Scholar 

  • Williams IS, Buick IS, Cartwright I (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J Metamorph Geol. 14:29–48

    Article  Google Scholar 

  • Wolf M, London D (1997) Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite. Contrib Mineral Petrol. 130:12–30

    Article  Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory and application. Am Mineral. 50:1228–1272

    Google Scholar 

  • Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol. 79:375–380

    Article  Google Scholar 

  • Yavuz F (2003) Evaluating micas in petrologic and metallogenic aspect: part II—applications using the computer program Mica+. Comput Geosci. 29:1215–1228

    Article  Google Scholar 

  • Yavuz F, Karakaya N, Yildirim DK, Karakaya MC (2014) A Windows program for calculation and classification of touramline-supergroup (IMA-2011). Comput Geosci. 63:70–87

    Article  Google Scholar 

  • Yoder JR, Kushiro I (1969) Melting of a hydrous phase; phlogopite. Am J Sci. 257-A:558–582

    Google Scholar 

  • Zirkler A, Johnson TE, White RW, Zack T (2012) Polymetamorphism in the mainland Lewisian complex, NW Scotland — phase equilibria and geochronological constraints from the Cnoc an t'Sidhean suite. J Metamorph Geol. 30:865–885

    Article  Google Scholar 

Download references

Acknowledgements

YO Mohammad is grateful to the Ministry of Higher Education and Scientific Research of Kurdistan Regional Government for providing a scholarship award which helped in producing this work. Thanks to the Department of Earth Sciences, University of Gothenburg, Sweden, for inviting and hosting the first author to prepare his post-doctorate research. DH Cornell is highly appreciated for isotope analysis and comments on the early draft. The reviews of two anonymous reviewers enhanced the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousif O. Mohammad.

Electronic supplementary material

Supplementary 1:

a and b Concordia age results for several zircon and monazite standards analysed in the same run as our analyses. (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, Y.O., Qaradaghi, J.H. Geochronological and mineral chemical constraints on the age and formation conditions of the leucogranite in the Mawat ophiolite, Northeastern of Iraq: insight to sync-subduction zone granite. Arab J Geosci 9, 608 (2016). https://doi.org/10.1007/s12517-016-2630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2630-4

Keywords

Navigation