Tschermak fractionation in calc-alkaline magmas: the Eocene Sabzevar volcanism (NE Iran)

  • Federico Lucci
  • Federico Rossetti
  • John Charles White
  • Hadi Shafaii Moghadam
  • Alireza Shirzadi
  • Mohsen Nasrabady
Original Paper


Calc-alkaline arc magmatism at convergent plate margins is volumetrically dominated by metaluminous andesites. Many studies highlighted the importance of differentiation via fractionation processes of arc magmas, but only in the last decades, it has been demonstrated that not all rock-forming minerals may affect the evolution of calc-alkaline suites. In particular, a major role exerted by Al-rich hornblende amphibole as fractionating mineral phase has been documented in many volcanic arc settings. The aim of this work is to understand the role of the Tschermak molecule (CaAlAlSiO6) hosted in the hornblende and plagioclase fractionation assemblage in driving magma differentiation in calc-alkaline magmatic suites. We explore this issue by applying replenishment–fractional crystallization (RFC) and rare earth element–Rayleigh fractional crystallization (REE-FC) modeling to the Sabzevar Eocene (ca. 45–47 Ma) calc-alkaline volcanism of NE Central Iran, where hornblende-controlled fractionation has been demonstrated. Major element mass balance modeling indicates RFC dominated by a fractionating assemblage made of Hbl52.0–52.5 + Pl44.1–44.2 + Ttn3.3–3.9 (phases are expressed on total crystallized assemblage). REE-FC modeling shows, instead, a lower degree of fractionation with respect to RFC models that is interpreted as due to hornblende and plagioclase resorption by the residual melt. Calculations demonstrate that fractionation of the Tschermak molecule can readily produce dacite and rhyolite magmas starting from a calc-alkaline andesite source (FC = ca. 30 %). In particular, the Tschermak molecule controls both the heavy rare earth elements (HREE) and light rare earth element (LREE) budgets in calc-alkaline differentiation trends.


Calc-alkaline magmatism Hornblende fractionation Tschermak Fractional crystallization modeling Iran 

Supplementary material

12517_2016_2598_MOESM1_ESM.xlsx (16 kb)
ESM 1(XLSX 16 kb)
12517_2016_2598_MOESM2_ESM.xlsx (17 kb)
ESM 2(XLSX 17 kb)
12517_2016_2598_MOESM3_ESM.xlsx (12 kb)
ESM 3(XLSX 12 kb)
12517_2016_2598_MOESM4_ESM.xlsx (14 kb)
ESM 4(XLSX 13 kb)


  1. Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94(3):401–419CrossRefGoogle Scholar
  2. Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monié P, Bertrand M, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148(5–6):692–725CrossRefGoogle Scholar
  3. Allen MB, Kheirkhah M, Neill I, Emami MH, McLeod CL (2013) Generation of arc and within-plate chemical signatures in collision zone magmatism: Quaternary lavas from Kurdistan Province, Iran. J Petrol 54:887–911CrossRefGoogle Scholar
  4. Anderson AT (1980) Significance of hornblende in calc-alkaline andesites and basalts. Am Mineral 65(9–10):837–851Google Scholar
  5. Arculus RJ, Wills KJ (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21(4):743–799CrossRefGoogle Scholar
  6. Azizi H, Asahara Y, Mehrabi B, Chung SL (2011) Geochronological and geochemical constraints on the petrogenesis of high-K granite from the Suffi abad area , Sanandaj-Sirjan Zone, NW Iran. Chem Erde-Geochem 71(4):363–376CrossRefGoogle Scholar
  7. Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98(2):224–256CrossRefGoogle Scholar
  8. Bagheri S, Stampfli GM (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451(1):123–155CrossRefGoogle Scholar
  9. Baharifar A, Moinevaziri H, Bellon H, Piqué A (2004) The crystalline complexes of Hamadan (Sanandaj–Sirjan zone, western Iran): metasedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. Compt Rendus Geosci 336(16):1443–1452CrossRefGoogle Scholar
  10. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18(2):210–265CrossRefGoogle Scholar
  11. Besse J, Torcq F, Gallet Y, Ricou LE, Krystyn L, Saidi A (1998) Late Permian to Late Triassic palaeomagnetic data from Iran: constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangaea. Geophys J Int 135(1):77–92CrossRefGoogle Scholar
  12. Brophy JG (1987) The Cold Bay volcanic center, Aleutian volcanic arc. Contrib Mineral Petrol 97(3):378–388CrossRefGoogle Scholar
  13. Brophy JG (1990) Andesites from northeastern Kanaga island, Aleutians. Contrib Mineral Petrol 104(5):568–581CrossRefGoogle Scholar
  14. Bryan WB, Finger LW, Chayes F (1969) Estimating proportions in petrographic mixing equations by least-square approximations. Science 163:926–927Google Scholar
  15. Bryant JA, Yogodzinski GM, Churikova TG (2011) High-Mg# andesitic lavas of the Shisheisky Complex, Northern Kamchatka: implications for primitive calc-alkaline magmatism. Contrib Mineral Petrol 161(5):791–810CrossRefGoogle Scholar
  16. Cawthorn RG, O’hara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276(3):309–329CrossRefGoogle Scholar
  17. Cawthorn RG, Curran EB, Arculus RJ (1973) A petrogenetic model for the origin of the calc-alkaline suite of Grenada, Lesser Antilles. J Petrol 14(2):327–337CrossRefGoogle Scholar
  18. Cherniak DJ, Dimanov A (2010) Diffusion in pyroxene, mica and amphibole. Rev Mineral Geochem 72(1):641–690CrossRefGoogle Scholar
  19. Chiaradia M, Müntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Mineral Petrol 158(5):563–588CrossRefGoogle Scholar
  20. Chiu HY, Chung SL, Zarrinkoub MH, Mohammadi SS, Khatib MM, Iizuka Y (2013) Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162:70–87CrossRefGoogle Scholar
  21. Dargahi S, Arvin M, Pan Y, Babaei A (2010) Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision. Lithos 115(1):190–204CrossRefGoogle Scholar
  22. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35(9):787–790CrossRefGoogle Scholar
  23. Davidson J, Turner S, Plank T (2013) Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J Petrol 54(3):525–537CrossRefGoogle Scholar
  24. Deer WA, Howie RA, Zussman J (1982) Rock-forming minerals, volume 1A: orthosilicates. The Geological Society, London, p. 912Google Scholar
  25. Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals, volume 2B, double-chain silicates. The Geological Society, London, p. 764Google Scholar
  26. Deer WA, Howie RA, Zussman J (2001) Rock-forming minerals, volume 4B, framework silicates: feldspars. The Geological Society, London, p. 992Google Scholar
  27. Deering CD, Cole JW, Vogel TA (2011) Extraction of crystal-poor rhyolite from a hornblende-bearing intermediate mush: a case study of the caldera-forming Matahina eruption, Okataina volcanic complex. Contrib Mineral Petrol 161(1):129–151CrossRefGoogle Scholar
  28. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347(6294):662–665CrossRefGoogle Scholar
  29. Dessimoz M, Müntener O, Ulmer P (2012) A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades). Contrib Mineral Petrol 163(4):567–589CrossRefGoogle Scholar
  30. Fujimaki H, Tatsumoto M, Aoki K-i (1984) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. J Geophys Res 89:662–672CrossRefGoogle Scholar
  31. Gao Y, Santosh M, Hou Z, Wei R, Ma G, Chen Z, Wu J (2012) High Sr/Y magmas generated through crystal fractionation: evidence from Mesozoic volcanic rocks in the northern Taihang orogen, North China Craton. Gondwana Res 22(1):152–168CrossRefGoogle Scholar
  32. Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). J Asian Earth Sci 26(6):683–693CrossRefGoogle Scholar
  33. Gill J (1981) Orogenic andesites and plate tectonics. Springer, Berlin, p. 390CrossRefGoogle Scholar
  34. Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim Cosmochim Acta 68(18):3741–3759CrossRefGoogle Scholar
  35. Green TH, Pearson NJ (1983) Effect of pressure on rare earth element partition coefficients in common magmas. Nature 305:414–416. doi:10.10138/305414a0
  36. Green TH, Pearson NJ (1985) Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure. Geochim Cosmochim Acta 49(1):465–1–46468. doi:10.1016/0016-7037(85)90295-9. Google Scholar
  37. Grove TL, Gerlach DC, Sando TW (1982) Origin of calc-alkaline series lavas at medicine Lake volcano by fractionation, assimilation and mixing. Contrib Mineral Petrol 80(2):160–182CrossRefGoogle Scholar
  38. Grove T, Parman S, Bowring S, Price R, Baker M (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142(4):375–396CrossRefGoogle Scholar
  39. Jamshidi K, Ghasemi H, Troll VR, Sadeghian M, Dahren B (2015) Magma storage and plumbing of adakite-type post-ophiolite intrusions in the Sabzevar ophiolitic zone, Northeast Iran. Solid Earth 6(1):49CrossRefGoogle Scholar
  40. Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem 3:593–659Google Scholar
  41. Kerr AC, Kempton PD, Thompson RN (1995) Crustal assimilation during turbulent magma ascent (ATA); new isotopic evidence from the Mull Tertiary lava succession, NW Scotland. Contrib Mineral Petrol 119(2–3):142–154CrossRefGoogle Scholar
  42. Kimura J-I, Kent AJR, Rowe MC, Katakuse M, Nakano F, Hacker BR, van Keken PE, Kawabata H, Stern RJ (2010) Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochem Geophys Geosyst 11. doi:10.1029/2010GC003050.
  43. Kodolányi J, Pettke T, Spandler C, Kamber BS, Gméling K (2011) Geochemistry of ocean floor and fore-arc sperpentinites: constraints on the ultramafic input to subduction zone. J Petrol egr058. doi:10.1093/petrology/egr058
  44. Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada. Contrib Mineral Petrol 159(4):475–492CrossRefGoogle Scholar
  45. Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks. A classification and glossary of terms. Reccommendations of the IUGS Subcomission on the Systematics of Igneous Rocks. Cambridge University Press, pp. 236Google Scholar
  46. Leake BE, Woolley AR, Birch WD, Burke EA, Ferraris G, Grice JD, Hawthorne FC, Kisch JH, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJC (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Associationʼs amphibole nomenclature. Am Mineral 89:883–887Google Scholar
  47. Luhr JF, Carmichael ISE (1980) The Colima volcanic complex, Mexico. I: post-caldera andesites from Volcan Colima. Contrib Mineral Petrol 71:343–372CrossRefGoogle Scholar
  48. Macpherson CG (2008) Lithosphere erosion and crustal growth in subduction zones: insights from initiation of the nascent East Philippine Arc. Geology 36(4):311–314CrossRefGoogle Scholar
  49. Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3):581–593CrossRefGoogle Scholar
  50. Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79(1):1–24CrossRefGoogle Scholar
  51. Matsui Y (1977) Crystal structure control in trace element partition between crystal and magma. Bull Soc Fr Mineral Crystallogr 100:315–324Google Scholar
  52. McCall GJH (1997) The geotectonic history of the Makran and adjacent areas of southern Iran. J Asian Earth Sci 15(6):517–531CrossRefGoogle Scholar
  53. Moghadam HS, Stern RJ (2011) Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone. Geol Mag 148(5–6):762–801CrossRefGoogle Scholar
  54. Moghadam HS, Li XH, Ling XX, Santos JF, Stern RJ, Li QL, Ghorbani G (2015) Eocene Kashmar granitoids (NE Iran): petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry. Lithos 216:118–135CrossRefGoogle Scholar
  55. Moghadam HS, Rossetti F, Lucci F, Chiaradia M, Gerdes A, Martinez ML, Ghorbani G, Nasrabady M (2016) The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): implications for the Eocene magmatic flare-up in Central Iran. Lithos 248:517–535CrossRefGoogle Scholar
  56. Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. J Asian Earth Sci 21(4):397–412CrossRefGoogle Scholar
  57. Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth Planet Sci Lett 202(3):709–724CrossRefGoogle Scholar
  58. Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112(3):556–574CrossRefGoogle Scholar
  59. Muntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141(6):643–658CrossRefGoogle Scholar
  60. Nagasawa H, Schnetzler CC (1971) Partitioning of rare earth, alkali, and alkaline earth elements between phenocrysts and acidic igneous magmas. Geochim Cosmochim Acta 35:953–968. doi:10.1016/0016-7037(71)90008-1. CrossRefGoogle Scholar
  61. Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167(6):1–27CrossRefGoogle Scholar
  62. Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106(3):380–398CrossRefGoogle Scholar
  63. Omrani H, Moazzen M, Oberhänsli R, Altenberger U, Lange M (2013) The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction. Int J Earth Sci. doi:10.1007/s00531-013-0881-9
  64. Pang KN, Chung SL, Zarrinkoub MH, Khatib MM, Mohammadi SS, Chiu HY, Chu CH, Lee HY, Lo CH (2013) Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos 180:234–251CrossRefGoogle Scholar
  65. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58(1):63–81CrossRefGoogle Scholar
  66. Philpotts A, Ague J (2009) Principles of igneous and metamorphic petrology. Cambridge University PressGoogle Scholar
  67. Pichavant M, Macdonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154(5):535–558CrossRefGoogle Scholar
  68. Rayleigh Lord JWS (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. London, Edinburgh, Dublin Philos Mag J Sci 42(259):493–498CrossRefGoogle Scholar
  69. Romick JD, Kay SM, Kay RW (1992) The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib Mineral Petrol 112(1):101–118CrossRefGoogle Scholar
  70. Rossetti F, Nasrabady M, Vignaroli G, Theye T, Gerdes A, Razavi SMH, Moin Vaziri H (2010) Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran. Terra Nova 22:26–34. doi:10.111/j.1365-3121.2009.00912.x
  71. Rossetti F, Nasrabady M, Theye T, Gerdes A, Monié P, Lucci F, Vignaroli G (2014) Adakite differentiation and emplacement in a subduction channel: the late Paleocene Sabzevar magmatism (NE Iran). Geol Soc Am Bull 126(3–4):317–343CrossRefGoogle Scholar
  72. Rudnick RL, Gao S (2003) Composition of the continental crust. Crust, Treatise Geochem 3:1–64CrossRefGoogle Scholar
  73. Santo AP, Jacobsen SB, Baker J (2004) Evolution and genesis of calc-alkaline magmas at Filicudi volcano, Aeolian Arc (Southern Tyrrhenian Sea, Italy). Lithos 72(1):73–96CrossRefGoogle Scholar
  74. Schnetzler CC, Philpotts JA (1970) Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts; II. Geochim Cosmochim Acta 34(3):331–340. doi:10.1016/0016-7037(70)90110-9. CrossRefGoogle Scholar
  75. Shand, S. J. (1943). Eruptive rocks: their genesis, composition, and classification, with a chapter on meteorites. J. Wiley and Sons, IncorporatedGoogle Scholar
  76. Shand SJ (1947) The genesis of intrusive magnetite and related ores. Econ Geol 42(7):634–636CrossRefGoogle Scholar
  77. Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661CrossRefGoogle Scholar
  78. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196(1):17–33CrossRefGoogle Scholar
  79. Stern RJ (2002) Subduction zones. Rev Geophys 40(4):1–38Google Scholar
  80. Stern CR (2011) Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res 20(2):284–308CrossRefGoogle Scholar
  81. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond, Spec Publ 42(1):313–345CrossRefGoogle Scholar
  82. Takahashi T, Hirahara Y, Miyazaki T, Senda R, Chang Q, Kimura JI, Tatsumi Y (2013) Primary magmas at the volcanic front of the NE Japan arc: coeval eruption of crustal low-K tholeiitic and mantle-derived medium-K calc-alkaline basalts at Azuma Volcano. J Petrol 54(1):103–148CrossRefGoogle Scholar
  83. Tatsumi, Y. (2005). The subduction factory: how it operates in the evolving Earth GSA today, 15(7):4Google Scholar
  84. Ulmer P (2007) Differentiation of mantle-derived calc-alkaline magmas at mid to lower crustal levels: experimental and petrologic constraints. Periodico Mineral 76(2–3):309–325Google Scholar
  85. Verdel C, Wernicke BP, Hassanzadeh J, Guest B (2011) A Paleogene extensional arc flare-up in Iran. Tectonics 30(3)Google Scholar
  86. Verdel C, Wernicke BP, Ramezani J, Hassanzadeh J, Renne PR, Spell TL (2007) Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geol Soc Am Bull 119(7–8):961–977CrossRefGoogle Scholar
  87. White JC, Parker DF, Ren M (2009) The origin of trachyte and pantellerite from Pantelleria, Italy: insights from major element, trace element, and thermodynamic modelling. J Volcanol Geotherm Res 179(1):33–55CrossRefGoogle Scholar
  88. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185CrossRefGoogle Scholar
  89. Zhang X, Mao Q, Zhang H, Zhai M, Yang Y, Hu Z (2011) Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: the Early Permian Guyang batholith from the northern North China Craton. Lithos 125(1):569–591CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2016

Authors and Affiliations

  • Federico Lucci
    • 1
  • Federico Rossetti
    • 1
  • John Charles White
    • 2
  • Hadi Shafaii Moghadam
    • 3
  • Alireza Shirzadi
    • 4
  • Mohsen Nasrabady
    • 5
  1. 1.Dipartimento di Scienze, Sezione Scienze GeologicheUniversità “Roma Tre”RomeItaly
  2. 2.Department of Geography and GeologyEastern Kentucky UniversityRichmondUSA
  3. 3.ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC ARC National Key Centre, Department of Earth and Planetary SciencesMacquarie UniversitySydneyAustralia
  4. 4.Science and Research BranchIslamic Azad UniversityTehranIran
  5. 5.Department of GeologyImam Khomeini International UniversityQazvinIran

Personalised recommendations