Skip to main content

Advertisement

Log in

Climate and hydrological models to assess the impact of climate change on hydrological regime: a review

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Quantitative knowledge about the impacts of climate change on the hydrological regime is essential in order to achieve meaningful insights to address various adverse consequences related to water such as water scarcity, flooding, drought, etc. General circulation models (GCMs) have been developed to simulate the present climate and to predict future climatic change. But, the coarse resolution of their outputs is inefficient to resolve significant regional scale features for assessing the effects of climate change on the hydrological regimes, thus restricting their direct implementation in hydrological models. This article reviews hierarchy and development of climate models from the early times, importance and inter-comparison of downscaling techniques and development of hydrological models. Also recent research developments regarding the evaluation of climate change impact on the hydrological regime have been discussed. The article also provides some suggestions to improve the effectiveness of modelling approaches involved in the assessment of climate change impact on hydrological regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhtar MK, Corzo GA, van Andel SJ, Jonoski A (2009) River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrol Earth Syst Sci 13:1607–1618

    Article  Google Scholar 

  • Alexander MA, Scott JD, Mahoney K, Barsugli J (2013) Greenhouse gas-induced changes in summer precipitation over Colorado in NARCCAP regional climate models. J Clim 26:8690–8697

    Article  Google Scholar 

  • Allen M, Frame D, Kettleborough J, Stainforth D (2006) Model error in weather and climate forecasting. In: Predictability of weather and climate. Cambridge University Press, pp 391–427

  • Alley WM (1984) On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models. Water Resour Res 20:1137–1149

    Article  Google Scholar 

  • Al-Zu’bi Y, Sheta A, Al-Zu’bi J (2010) Nile river flow forecasting based on Takagi-Sugeno fuzzy model. J Appl Sci 10:284–290

    Article  Google Scholar 

  • Anderegg WRL, Prall JW, Harold J, Schneider SH (2010) Expert credibility in climate change. Proc Natl Acad Sci 107:12107–12109

    Article  Google Scholar 

  • Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys Res Lett 39:L09712

    Google Scholar 

  • Angstrom A (1926) Energiezufuhr und temperatur auf verschiedenen Breitengraden. Gerlands Beitr Geophysik 15:1–13

    Google Scholar 

  • Annan JD, Hargreaves JC (2006) Using multiple observationally-based constraints to estimate climate sensitivity. Geophys Res Lett 33:L06704

    Article  Google Scholar 

  • Anthes RA, Warner TT (1978) Development of hydrodynamic models suitable for air pollution and other mesometerological studies. Mon Weather Rev 106:1045–1078

    Article  Google Scholar 

  • Armour KC, Bitz CM, Roe GH (2013) Time-varying climate sensitivity from regional feedbacks. J Clim 26:4518–4534

    Article  Google Scholar 

  • Arnell NW (1992) Factors controlling the effects of climate change on river flow regimes in a humid temperate environment. J Hydrol 132:321–342

    Article  Google Scholar 

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag 41:237–276

    Article  Google Scholar 

  • Azhar AH, Perera BJC (2011) Evaluation of reference evapotranspiration estimation methods under southeast Australian conditions. J Irrig Drain Eng 137:268–279

    Article  Google Scholar 

  • Bardossy A, Duckstein L, Bogardi I (1995) Fuzzy rule-based classification of atmospheric circulation patterns. Int J Climatol 15:1087–1097

    Article  Google Scholar 

  • Bardossy A, Stehlik J, Caspary HJ (2002) Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules. Clim Res 23:11–22

    Article  Google Scholar 

  • Benestad RE (2001) A comparison between two empirical downscaling strategies. Int J Climatol 21:1645–1668

    Article  Google Scholar 

  • Benestad RE (2002) Empirically downscaled multimodel ensemble temperature and precipitation scenarios for Norway. J Clim 21:3008–3027

    Article  Google Scholar 

  • Bernard L, Semmler W (eds) (2015) The oxford handbook of the macroeconomics of global warming. Oxford University Press, New York

    Google Scholar 

  • Beven KJ (1989) Changing ideas in hydrology: the case of physically based models. J Hydrol 105:157–172

    Article  Google Scholar 

  • Beven KJ (2001) Rainfall-runoff modelling: the primer. Wiley, Chichester

    Google Scholar 

  • Bhunya PK, Berndtsson R, Ojha CSP, Mishra SK (2007) Suitability of gamma, chi-square, Weibull, and beta distributions as synthetic unit hydrographs. J Hydrol 334:28–38

    Article  Google Scholar 

  • Bocchiola D, Diolaiuti G, Soncini A, Mihalcea C, D’Agata C, Mayer C, Lambrecht A, Rosso R, Smiraglia C (2011) Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan. Hydrol Earth Syst Sci 15:2059–2075

    Article  Google Scholar 

  • Borah DK, Bera M, Xia R (2004) Storm event flow and sediment simulations in agricultural watersheds using DWSM. Trans ASAE 47:1539–1559

    Article  Google Scholar 

  • Botter G, Rinaldo A (2003) Scale effect on geomorphologic and kinematic dispersion. Water Resour Res 39:1286

    Article  Google Scholar 

  • Brooks N, Legrand M (2000) Dust variability over Northern Africa and rainfall in the Sahel. In: Linking climate change to land surface change. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 1–25

    Chapter  Google Scholar 

  • Bryan K (1969) Climate and the ocean circulation III. The ocean model. Mon Weather Rev 97:806–827

    Article  Google Scholar 

  • Bryan K, Cox MD (1967) A numerical investigation of the oceanic general circulation. Tellus 19:54–80

    Article  Google Scholar 

  • Bryan K, Cox MD (1968a) A nonlinear model of an ocean driven by wind and differential heating: part I. Description of the three-dimensional velocity and density fields. J Atmos Sci 25:945–967

    Article  Google Scholar 

  • Bryan K, Cox MD (1968b) A nonlinear model of an ocean driven by wind and differential heating: part II. An analysis of the heat, vorticity and energy balance. J Atmos Sci 25:968–978

    Article  Google Scholar 

  • Budyko MI (1969) The effect of solar radiation variations on the climate of the earth. Tellus 21:611–619

    Article  Google Scholar 

  • Callendar GS (1938) The artificial production of carbon dioxide and its influence on temperature. Q J R Meteorol Soc 64:223–240

    Article  Google Scholar 

  • Candela A, Brigandi G, Aronica GT (2014) Estimation of synthetic flood design hydrographs using a distributed rainfall-runoff model coupled with a copula-based single storm rainfall generator. Nat Hazards Earth Syst Sci 14:1819–1833

    Article  Google Scholar 

  • Carreau J, Vrac M (2011) Stochastic downscaling of precipitation with neural network conditional mixture models. Water Resour Res 47:W10502

    Article  Google Scholar 

  • Chang JC, Hanna SR (2004) Air quality model performance evaluation. Meteorog Atmos Phys 87:167–196

    Article  Google Scholar 

  • Chen DL, Chen YM (2003) Association between winter temperature in China and upper air circulation over East Asia revealed by canonical correlation analysis. Glob Planet Chang 37:315–325

    Article  Google Scholar 

  • Chen H, Guo J, Xiong W, Shenglian G, Xu CY (2010) Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang basin. Adv Atmos Sci 27:274–284

    Article  Google Scholar 

  • Chen J, Brissette FP, Leconte R (2011) Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J Hydrol 401:190–202

    Article  Google Scholar 

  • Chen J, Brissett FP, Chaumont D, Braun M (2013) Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J Hydrol 479:200–214

    Article  Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Christensen NS, Lettenmaier DP (2007) A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado river basin. Hydrol Earth Syst Sci 11:1417–1434

    Article  Google Scholar 

  • Ciarapica L, Todini E (2002) TOPKAPI: a model for the representation of the rainfall-runoff process at different scales. Hydrol Process 16:207–229

    Article  Google Scholar 

  • Clark CO (1945) Storage and the unit hydrograph. Trans Am Soc Civ Eng 110:1419–1446

    Google Scholar 

  • Cleugh HA, Leuning R, Mu Q, Running SW (2007) Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ 106:285–304

    Article  Google Scholar 

  • Colle BA, Wolfe JB, Steenburgh WJ, Kingsmill DE, Cox JAW, Shafer JC (2005) High-resolution simulations and microphysical validation of an orographic precipitation event over the Wasatch Mountains during IPEX IOP3. Mon Weather Rev 133:2947–2971

    Article  Google Scholar 

  • Collins WT (1939) Runoff distribution graphs from precipitation occurring in more than one time unit. Civ Eng 9:559–561

    Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski Jr WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136

  • Corney S, Grose M, Bennett JC, White C, Katzfey J, McGregor J, Holz G, Bindoff NL (2013) Performance of downscaled regional climate simulations using a variable-resolution regional climate model: Tasmania as a test case. J Geophys Res Atmos 118:11936–11950

    Article  Google Scholar 

  • Darcy H (1856) Les Fontaines Publiques de la ville de Dijon. Dalmont, Paris

    Google Scholar 

  • Debreu L, Marchesiello P, Penven P, Cambon G (2012) Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Model 49–50:1–21

    Article  Google Scholar 

  • Deng X, Stull R (2005) A mesoscale analysis method for surface potential temperature in mountainous and coastal terrain. Mon Weather Rev 133:389–408

    Article  Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546

    Article  Google Scholar 

  • Diallo I, Sylla MB, Giorgi F, Gaye AT, Camara M (2012) Multimodel GCM-RCM ensemble-based projections of temperature and precipitation over West Africa for the early 21st century. Int J Geophys. doi:10.1155/2012/972896

    Google Scholar 

  • Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river Thames, United Kingdom. Clim Chang 69:245–268

    Article  Google Scholar 

  • Dibike YB, Coulibaly P (2006) Temporal neural networks for downscaling climate variability and extremes. Neural Netw 19:135–144

    Article  Google Scholar 

  • Djaman K, Balde AB, Sow A, Muller B, Irmak S, N’Diaye MK, Manneh B, Moukoumbi YD, Futakuchi K, Saito K (2015) Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal river valley. J Hydro Reg Stud 3:139–159

    Article  Google Scholar 

  • Dooge JCI (1959) A general theory of the unit hydrograph. J Geophys Res 64:241–256

    Article  Google Scholar 

  • Eagleson PS, Mejia-R R, March F (1966) Computation of optimum realizable unit hydrographs. Water Resour Res 2:755–764

    Article  Google Scholar 

  • Earth’s climate system today. http://web.bf.uni-lj.si/agromet/EarthsClimate_Web_Chapter.pdf. Accessed 30 March 2016

  • Eden JM, Widmann M, Grawe D, Rast S (2012) Skill, correction, and downscaling of GCM-simulated precipitation. J Clim 25:3970–3984

    Article  Google Scholar 

  • Egger J (1975) A statistical-dynamical model of the zonally averaged steady-state of the general circulation of the atmosphere. Tellus 27:325–350

    Article  Google Scholar 

  • Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS Opinions “Should we apply bias correction to global and regional climate model data?”. Hydrol Earth Syst Sci 16:3391–3404

    Article  Google Scholar 

  • Elhakeem M, Papanicolaou AN (2009) Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA. Water Resour Manag 23:2455–2473

    Article  Google Scholar 

  • Environment Canada. http://www.ec.gc.ca/ccmac-cccma/default.asp?n=1299529F-1. Accessed 21 September 2015

  • Eriksson E (1968) Air-ocean-ice cap interactions in relation to climatic fluctuations and glaciation cycles. Meteorol Monogr 8:68–92

    Google Scholar 

  • Fan LJ, Yan ZW, Chen D, Fu CB (2015) Comparison between two statistical downscaling methods for summer daily rainfall in Chongqing, China. Int J Climatol 35:3781–3797

    Article  Google Scholar 

  • Fanning AF, Weaver AJ (1996) An atmospheric energy-moisture balance model: climatology, interpentadal climate change, and coupling to an ocean general circulation model. J Geophys Res 101:15111–15128

    Article  Google Scholar 

  • Fichefet T, Tricot C, Berger A, Gallee H, Marisat I (1989) Climate studies with a coupled atmosphere-upper-ocean-ice-sheet model. Philos Trans R Soc 329:249–261

    Article  Google Scholar 

  • Foujols MA, Caubel A. ENES. https://verc.enes.org/models/earthsystem-models/ipsl/ipslesm. Accessed 2 January 2015

  • Fowler HJ, Kilsby CG, O’Connel PE, Burton A (2005) A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change. J Hydrol 308:50–66

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, New Jersey

    Google Scholar 

  • Fuentes U, Heimann D (2000) An improved statistical-dynamical downscaling scheme and its application to the alpine precipitation climatology. Theor Appl Climatol 65:119–135

    Article  Google Scholar 

  • Fujihara Y, Tanaka K, Watanabe T, Nagano T, Kojiri T (2008) Assessing the impacts of climate change on the water resources of the Seyhan river basin in Turkey: use of dynamically downscaled data for hydrological simulations. J Hydrol 353:33–48

    Article  Google Scholar 

  • Gelati E, Christensen OB, Rasmussen PF, Rosbjerg D (2010) Downscaling atmospheric patterns to multi-site precipitation amounts in southern Scandinavia. Hydrol Res 41:193–210

    Article  Google Scholar 

  • Glahn HR, Lowry DA (1972) The use of Model Output Statistics (MOS) in objective weather forecasting. J Appl Meteorol 11:1203–1211

    Article  Google Scholar 

  • Gleick PH (1986) Methods for evaluating the regional hydrologic impacts of global climatic changes. J Hydrol 88:97–116

    Article  Google Scholar 

  • Gordon H, O’Farrell S, Collier M, Dix M, Rotstayn L, Kowalczyk E, Hirst T, Watterson I (2010) The CSIRO Mk3.5 climate model. CAWCR Technical Report No. 021, Melbourne, Australia

  • Graham LP, Andreasson J, Carlsson B (2007a) Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—a case study on the Lule river basin. Clim Chang 81:293–307

    Article  Google Scholar 

  • Graham LP, Hagemann S, Jaun S, Beniston M (2007b) On interpreting hydrological change from regional climate models. Clim Chang 81:97–122

    Article  Google Scholar 

  • Gray DM (1961) Synthetic unit hydrographs for small drainage areas. J Hydraul Div ASCE 87:33–54

    Google Scholar 

  • Green JSA (1970) Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Q J R Meteorol Soc 96:157–185

    Article  Google Scholar 

  • Greene AM, Robertson AW, Smyth P, Triglia S (2011) Downscaling projections of Indian monsoon rainfall using a non-homogeneous hidden Markov model. Q J R Meteorol Soc 137:347–359

    Article  Google Scholar 

  • Gronas S (2005) Vilhelm Bjerknes’ vision for scientific weather prediction. In: The Nordic Seas: an integrated perspective. American Geophysical Union, Washington, DC

  • Guyennon N, Romano E, Portoghese I, Salerno F, Calmanti S, Petrangeli AB, Tartari G, Copetti D (2013) Benefits from using combined dynamical-statistical downscaling approaches—lessons from a case study in the Mediterranean region. Hydrol Earth Syst Sci 17:705–720

    Article  Google Scholar 

  • Haas R, Pinto JG (2012) A combined statistical and dynamical approach for downscaling large-scale footprints of European windstorms. Geophys Res Lett 39:L23804

    Article  Google Scholar 

  • Haerter JO, Hagemann S, Moseley C, Piani C (2011) Climate model bias correction and the role of timescales. Hydrol Earth Syst Sci 15:1065–1079

    Article  Google Scholar 

  • Hall MCG, Cacuci DG, Schlesinger ME (1982) Sensitivity analysis of a radiative-convective model by the adjoint method. J Atmos Sci 39:2038–2050

    Article  Google Scholar 

  • Hanasaki N, Yamamoto T (2010) H08 manual user’s edition. National Institute for Environmental Studies, Tsukuba, Japan, p 76

    Google Scholar 

  • Hanna SR, Chang JC, Strimaitis DG (1993) Hazardous gas model evaluation with field observations. Atmos Environ 27A:2265–2285

    Article  Google Scholar 

  • Harris LM, Durran DR (2010) An idealized comparison of one-way and two-way grid nesting. Mon Weather Rev 138:2174–2187

    Article  Google Scholar 

  • Hattermann FF, Huang S, Burghoff O, Willems W, Osterle H, Buchner M, Kundzewicz Z (2014) Modelling flood damages under climate change conditions—a case study for Germany. Nat Hazards Earth Syst Sci 14:3151–3169

    Article  Google Scholar 

  • Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418

    Article  Google Scholar 

  • Hess P, Brezowsky H (1977) Katalog der Großwetterlagen Europas (1881–1976). Berichte des Deutschen Wetterdienstes 15:113

    Google Scholar 

  • Hewitson BC, Crane RG (1992) Large-scale atmospheric controls on local precipitation in tropical Mexico. Geophys Res Lett 19:1835–1838

    Article  Google Scholar 

  • Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 7:85–95

    Article  Google Scholar 

  • Hoffmeister G, Weisman RN (1977) Accuracy of synthetic hydrographs derived from representative basins. Hydrol Sci Bull 22:297–312

    Article  Google Scholar 

  • Honti M, Scheidegger A, Stamm C (2014) The importance of hydrological uncertainty assessment methods in climate change impact studies. Hydrol Earth Syst Sci 18:3301–3317

    Article  Google Scholar 

  • Horton RE (1933) The role of infiltration in the hydrologic cycle. Trans Am Geophys Union 14:446–460

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Hsiung J (1985) Estimates of global oceanic meridional heat transport. J Phys Oceanogr 15:1405–1413

    Article  Google Scholar 

  • Huang RX (2010) Ocean circulation: wind-driven and thermohaline processes. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hulme M (2009) On the origin of ‘the greenhouse effect’: John Tyndall’s 1859 interrogation of nature. Weather 64:121–123

    Article  Google Scholar 

  • Huth R (2002) Statistical downscaling of daily temperature in Central Europe. J Clim 15:1731–1742

    Article  Google Scholar 

  • Huth R (2004) Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors. J Clim 17:640–652

    Article  Google Scholar 

  • IPCC Fifth assessment report (AR5) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA. https://www.ipcc.ch/report/ar5/wg1. Accessed 20 April 2016

  • IPCC First assessment report (FAR) (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge. https://www.ipcc.ch/publications_and_data/publications_ipcc_first_assessment_1990_wg1.shtml. Accessed 20 April 2016

  • IPCC Fourth assessment report (AR4) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA. https://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html. Accessed 20 April 2016

  • IPCC Second assessment report (SAR) (1996) Climate change 1995: the science of climate change. Contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. https://www.ipcc.ch/publications_and_data/publications_ipcc_supplementary_report_1992_wg1.shtml. Accessed 20 April 2016

  • IPCC Third assessment report (TAR) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. http://www.grida.no/publications/other/ipcc_tar. Accessed 20 April 2016

  • Ireson A, Makropoulos C, Maksimovic C (2006) Water resources modelling under data scarcity: coupling MIKE BASIN and ASM groundwater model. Water Resour Manag 20:567–590

    Article  Google Scholar 

  • Islam SA, Bari MA, Anwar AHMF (2014) Hydrologic impact of climate change on Murray Hotham catchment of Western Australia: a projection of rainfall-runoff for future water resources planning. Hydrol Earth Syst Sci 18:3591–3614

    Article  Google Scholar 

  • Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54:1593–1600

    Google Scholar 

  • Jha MK (2005) Hydrological modelling and climate change study in the Upper Mississippi river basin using SWAT. PhD Thesis, Iowa State University, US

  • Joigneaux E, Alberic P, Pauwels H, Page C, Terray L, Bruand A (2011) Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France). Hydrol Earth Syst Sci 15:2459–2470

    Article  Google Scholar 

  • Jones PD, Hulme M, Briffa KR (1993) A comparison of Lamb circulation types with an objective classification scheme. Int J Climatol 13:655–663

    Article  Google Scholar 

  • Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, UK, p 40

    Google Scholar 

  • Kankam-Yeboah K, Obuobie E, Amisigo B, Opoku-Ankomah Y (2013) Impact of climate change on streamflow in selected river basins in Ghana. Hydrol Sci J 58:773–788

    Article  Google Scholar 

  • Karamouz M, Nazif S, Falahi M (2012) Hydrology and hydroclimatology: principles and applications. CRC Press, New York

    Book  Google Scholar 

  • Kattenberg A, Giorgi F, Grassl H, Meehl GA, Mitchell JFB, Stouffer RJ, Tokioka T, Weaver AJ, Wigley TML (1996) Climate models—projections of future climate. In: Climate change 1995: the science of climate change. Cambridge University Press, Cambridge, p 285–357

  • Kay AL, Davies HN, Bell VA, Jones RG (2009) Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim Chang 92:41–63

    Article  Google Scholar 

  • Khoi DN, Hang PTT (2015) Uncertainty assessment of climate change impacts on hydrology: a case study for the Central Highlands of Vietnam. In: Managing water resources under climate uncertainty. Springer International Publishing, Switzerland, p 31–44

  • Kidson JW, Thompson CS (1998) A comparison of statistical and model-based downscaling techniques for estimating local climate variations. J Clim 11:735–753

    Article  Google Scholar 

  • King KW, Balogh JC (2008) Curve numbers for golf course watersheds. Trans ASABE 51:987–996

    Article  Google Scholar 

  • Kirkby MJ (1976) Tests of the random network model, and its application to basin hydrology. Earth Surf Process Landf 1:197–212

    Article  Google Scholar 

  • Klein WH, Lewis BM, Enger I (1959) Objective prediction of five-days mean temperatures during winter. J Meteorol 16:672–682

    Article  Google Scholar 

  • Knisel WG (ed) (1980) CREAMS: a field-scale model for chemical, runoff and erosion from agricultural management systems. Conservation Research Report No. 26, USDA, Washington DC

  • Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the earth’s temperature to radiation changes. Nat Geosci 1:735–743

    Article  Google Scholar 

  • Kurihara Y (1970) A statistical-dynamical model of the general circulation of the atmosphere. J Atmos Sci 27:847–870

    Article  Google Scholar 

  • Lamb HH (1972) British Isles weather types and a register of daily sequence of circulation patterns, 1861–1971. Geophys Mem 116

  • Larsen MAD, Refsgaard JC, Drews M, Butts MB, Jensen KH, Christensen JH, Christensen OB (2014) Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model for a Danish catchment. Hydrol Earth Syst Sci 11:3005–3047

    Article  Google Scholar 

  • Li R, Wang SY, Gillies RR (2015) A combined dynamical and statistical downscaling technique to reduce biases in climate projections: an example for winter precipitation and snowpack in the western United States. Theor Appl Climatol. doi:10.1007/s00704-015-1415-0

    Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99:14415–14428

    Article  Google Scholar 

  • Linderson ML (2001) Objective classification of atmospheric circulation over southern Scandinavia. Int J Climatol 2:155–169

    Article  Google Scholar 

  • Lineykin PC (1955) On the determination of the thickness of the baroclinic layer of fluid heated uniformly above and non-uniformly from below. Dolk Akad Nauk USSR 101:461

    Google Scholar 

  • Liu XZ, Li JZ (2008) Application of SCS model in estimation of runoff from small watershed in Loess Plateau of China. Chin Geogr Sci 18:235–241

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Lund IA (1963) Map-pattern classification by statistical methods. J Appl Meteorol 2:56–65

    Article  Google Scholar 

  • Lynch P (2008) The origins of computer weather prediction and climate modeling. J Comput Phys 227:3431–3444

    Article  Google Scholar 

  • Maidment DR, Olivera F, Calver A, Eatherall A, Fraczek W (1996) Unit hydrograph derived from a spatially distributed velocity field. Hydrol Process 10:831–844

    Article  Google Scholar 

  • Manabe S (1969a) Climate and the ocean circulation I. The atmospheric circulation and the hydrology of the earth’s surface. Mon Weather Rev 97:739–774

    Article  Google Scholar 

  • Manabe S (1969b) Climate and the ocean circulation II. The atmospheric circulation and the effect of heat transfer by ocean currents. Mon Weather Rev 97:775–805

    Article  Google Scholar 

  • Manabe S, Bryan K (1969) Climate calculations with a combined ocean–atmosphere model. J Atmos Sci 26:786–789

    Article  Google Scholar 

  • Manabe S, Strickler RF (1964) Thermal equilibrium of the atmosphere with a convective adjustment. J Atmos Sci 21:361–385

    Article  Google Scholar 

  • Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259

    Article  Google Scholar 

  • Manabe S, Wetherald RT (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32:3–15

    Article  Google Scholar 

  • Manabe S, Wetherald RT (1980) On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. J Atmos Sci 37:99–118

    Article  Google Scholar 

  • Manabe S, Smagorinsky J, Strickler RF (1965) Simulated climatology of a general circulation model with a hydrologic cycle. Mon Weather Rev 93:769–798

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003

    Article  Google Scholar 

  • Masood M, Yeh PJF, Hanasaki N, Takeuchi K (2014) Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna (GBM) basin. Hydrol Earth Syst Sci 11:5747–5791

    Article  Google Scholar 

  • Maurer EP, Adam JC, Wood AW (2009) Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrol Earth Syst Sci 13:183–194

    Article  Google Scholar 

  • Mays LW, Taur CK (1982) Unit hydrographs via non-linear programing. Water Resour Res 18:744–752

    Article  Google Scholar 

  • McGuffie K, Henderson-Sellers A (2001) Forty years of numerical climate modelling. Int J Climatol 21:1067–1109

    Article  Google Scholar 

  • Mearns LO, Bukovsky MS, Leung R, Qian Y, Arritt R, Gutowski W, Takle ES, Biner S, Caya D, Correia J, Jones R, Sloan L, Snyder M (2013) Reply to “Comments on ‘The North American regional climate change assessment program: overview of phase I results’”. Bull Am Meteorol Soc 94:1077–1078

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy J, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–846

  • Menard R (2010) Bias estimation. In: Data assimilation. Springer, Heidelberg, Germany, pp 113–135

    Chapter  Google Scholar 

  • Mendes D, Marengo JA (2010) Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon basin in present and future climate change scenarios. Theor Appl Climatol 100:413–421

    Article  Google Scholar 

  • Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet BWAH, Schadler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Chang 49:105–128

    Article  Google Scholar 

  • MIKE 11 a modelling system for rivers and channels. Reference manual 2009. DHI Water & Environment. http://euroaquae.tu-cottbus.de/hydroweb/Platform/Notes/Mike11_Reference.pdf. Accessed 18 March 2015

  • MIKE 11 a modelling system for rivers and channels. Short introduction tutorial 2003. DHI Water & Environment. https://www.tu-braunschweig.de/Medien-DB/geooekologie/mike-11-short-introduction-tutorial.pdf. Accessed 3 March 2015

  • MIKE 11 a modelling system for rivers and channels. User Guide 2007. DHI Water & Environment. http://www.hydroeurope.org/jahia/webdav/site/hydroeurope/shared/old/Teams-2011/team1/Manuals/MIKE11_UserManual.pdf. Accessed 15 March 2015

  • Minville M, Brissette F, Leconte R (2008) Uncertainty of the impact of climate change on the hydrology of a Nordic watershed. J Hydrol 358:70–83

    Article  Google Scholar 

  • Mitchell JFB (1989) The greenhouse effect and climate change. Rev Geophys 27:115–139

    Article  Google Scholar 

  • Mitchell JFB, ManabeS, Meleshko V, Tokioka T (1990) Equilibrium climate change and its implications for the future. In: Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge, p 131–172

  • Monteith JL (1995a) A reinterpretation of stomatal responses to humidity. Plant Cell Environ 18:357–364

    Article  Google Scholar 

  • Monteith JL (1995b) Accommodation between transpiring vegetation and the convective boundary layer. J Hydrol 166:251–263

    Article  Google Scholar 

  • Montgomery DC, Runger GC (1994) Applied statistics and probability for engineers. John Wiley & Sons, New York

    Google Scholar 

  • Mood AM, Graybill FA, Boes DC (1974) Introduction to the theory of statistics. McGraw Hill, Tokyo

    Google Scholar 

  • Moore K, Pierson D, Pettersson K, Schneiderman E, Samuelsson P (2008) Effects of warmer world scenarios on hydrologic inputs to Lake Malaren, Sweden and implications for nutrient loads. Hydrobiologia 599:191–199

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800

    Article  Google Scholar 

  • Muerth MJ, Gauvin St-Denis B, Ricard S, Velazquez JA, Schmid J, Minville M, Caya D, Chaumont D, Ludwig R, Turcotte R (2013) On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol Earth Syst Sci 17:1189–1204

    Article  Google Scholar 

  • Murphy J (1999) An evaluation of statistical and dynamical techniques for downscaling local climate. J Clim 12:2256–2284

    Article  Google Scholar 

  • Murphy J (2000) Prediction of climate change over Europe using statistical and dynamical downscaling techniques. Int J Climatol 20:489–501

    Article  Google Scholar 

  • Naden P (1992) Spatial variability in flood estimation for large catchments: the exploitation of channel network structure. Hydrol Sci J 37:53–71

    Article  Google Scholar 

  • Nash JE (1957) The form of the instantaneous unit hydrograph. Hydrol Sci Bull 3:114–121

    Google Scholar 

  • Nash JE (1959) Synthetic determination of unit hydrograph parameters. J Geophys Res 64:111–115

    Article  Google Scholar 

  • Ng HYF, Marsalek J (1992) Sensitivity of streamflow simulation to changes in climatic inputs. Nord Hydrol 23:257–272

    Google Scholar 

  • North GR (1975) Analytical solution to a simple climate model with diffusive heat transport. J Atmos Sci 32:1301–1307

    Article  Google Scholar 

  • North GR, Cahalan RF, Jr Coakley JA (1981) Energy balance climate models. Rev Geophys 19:91–121

    Article  Google Scholar 

  • Pacanowski RC, Dixon K, Rosati A (1993) The GFDL modular ocean model users guide. GFDL Ocean Group, Technical Report No. 2. Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, pp 46

  • Peleg N, Shamir E, Georgakakos KP, Morin E (2015) A framework for assessing hydrological regime sensitivity to climate change in a convective rainfall environment: a case study of two medium-sized eastern Mediterranean catchments, Israel. Hydrol Earth Syst Sci 19:567–581

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil, and grass. Proc R Soc Lond 193:120–145

    Article  Google Scholar 

  • Perazzoli M, Pinheiro A, Kaufmann V (2013) Assessing the impact of climate change scenarios on water resources in southern Brazil. Hydrol Sci J 58:77–87

    Article  Google Scholar 

  • Pfutzner B, Lahmer W, Becker A (1997) ARC/EGMO-program system for GIS-based hydrological modelling. Short guide to version 2.0 (in German, unpublished). Postdam Institute for Climate Impact Research, Germany

  • Philander SG (ed) (2012) Encyclopedia of global warming and climate change. SAGE Publications, USA

    Google Scholar 

  • Phillips NA (1956) The general circulation of the atmosphere: a numerical experiment. Q J R Meteorol Soc 82:123–164

    Article  Google Scholar 

  • Pielke RS (2013) Comments on “The North American regional climate change assessment program: overview of phase I results”. Bull Am Meteorol Soc 94:1075–1077

    Article  Google Scholar 

  • Piniewski M, Voss F, Barlund I, Okruszko T, Kundzewicz ZW (2013) Effect of modelling scale on the assessment of climate change impact on river runoff. Hydrol Sci J 58:737–754

    Article  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Praskievicz S, Chang H (2009) A review of hydrological modelling of basin-scale climate change and urban development impacts. Prog Phys Geogr 33:650–671

    Article  Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, KheshgiHS, Quéré CL, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 21–83

  • Racsko P, Szeidl L, Semenov MA (1991) A serial approach to local stochastic weather models. Ecol Model 57:27–41

    Article  Google Scholar 

  • Rafferty JP (ed) (2012) The living earth: oceans and oceanography. Britannica Educational Publishing in association with Rosen Educational Services. New York

  • Raje D, Priya P, Krishnan R (2014) Macroscale hydrological modelling approach for study of large scale hydrologic impacts under climate change in Indian river basins. Hydrol Process 28:1874–1889

    Article  Google Scholar 

  • Ramanathan V, Jr Coakley JA (1978) Climate modeling through radiative-convective models. Rev Geophys 16:465–489

    Article  Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1:318–333

    Google Scholar 

  • Rinaldo A, Rodriguez-Iturbe I (1996) Geomorphological theory of the hydrological response. Hydrol Process 10:803–829

    Article  Google Scholar 

  • Robinson A, Stommel H (1959) The oceanic thermocline and the associated thermohaline circulation. Tellus 11:295–308

    Google Scholar 

  • Rodriguez-Iturbe I, Valdes JB (1979) The geomorphologic structure of hydrologic response. Water Resour Res 15:1409–1420

    Article  Google Scholar 

  • Rodwell MJ, Palmer TN (2007) Using numerical weather prediction to assess climate models. Q J R Meteorol Soc 133:129–146

    Article  Google Scholar 

  • Roeckner E, Bauml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Report No. 349. Max Planck Institute for Meteorology, Hamburg, Germany

  • Rosenthal WD, Srinivasan R, Arnold JG (1995) Alternative river management using a linked GIS-hydrology model. Trans ASAE 38:783–790

    Article  Google Scholar 

  • Rosso R (1984) Nash model relation to Horton order ratios. Water Resour Res 20:914–920

    Article  Google Scholar 

  • Rummukainen M (1997) Methods for statistical downscaling of GCM simulation. SWECLIM Report. Rossby Centre, SMHI, Norrkoping, Sweden

  • Sachindra DA, Huang F, Barton A, Perera BJC (2014) Statistical downscaling of general circulation model outputs to precipitation—part 2: bias-correction and future projections. Int J Climatol 34:3282–3303

    Article  Google Scholar 

  • Saito Y, Hanasaki N (2012) H08 manual analyzer’s edition. National Institute for Environmental Studies, Tsukuba, Japan, p 81

    Google Scholar 

  • Sakamoto TT, Komuro Y, Nishimura T, Ishii M, Tatebe H, Shiogama H, Hasegawa A, Toyoda T, Mori M, Suzuki T, Imada Y, Nozawa T, Takata K, Mochizuki T, Ogochi K, Emori S, Hasumi H, Kimoto M (2012) MIROC4h—a new high-resolution atmosphere–ocean coupled general circulation model. J Meteorol Soc Jpn 90:325–359

    Article  Google Scholar 

  • Saltzman B (1978) A survey of statistical-dynamical models of the terrestrial climate. Adv Geophys 20:183–304

    Article  Google Scholar 

  • Saltzman B, Vernekar AD (1971) An equilibrium solution for the axially symmetric component of the earth’s macroclimate. J Geophys Res 76:1498–1524

    Article  Google Scholar 

  • Schimming CG, Mette R, Reiche EW, Schrautzer J, Wetzel H (1995) Nitrogen fluxes in a typical agroecosystem in Schleswig-Holstein- measurements, budgets, model validation. J Plant Nutr Soil Sci 158:313–322

    Google Scholar 

  • Schneider SH, Dickinson RE (1974) Climate modeling. Rev Geophys Space Phys 12:447–493

    Article  Google Scholar 

  • Schwartz SE (2004) Uncertainty requirements in radiative forcing of climate change. J Air Waste Manage Assoc 54:1351–1359

    Article  Google Scholar 

  • SCS (1957) Use of storm and watershed characteristics in synthetic hydrograph analysis and application. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Sellers WD (1969) A global climate model based on the energy balance of the earth-atmosphere system. J Appl Meteorol 8:392–400

    Article  Google Scholar 

  • Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Chang 35:397–414

    Article  Google Scholar 

  • Sherman LK (1932) Streamflow from rainfall by the unit-graph method. Eng News Record 108:501–505

    Google Scholar 

  • Shrestha S (2014) Assessment of water availability under climate change scenarios in Thailand. J Earth Sci Clim Chang 5:1–7

    Article  Google Scholar 

  • Shrestha RR, Dibike YB, Prowse TD (2012) Modelling of climate-induced hydrologic changes in the Lake Winnipeg watershed. J Great Lakes Res 38:1–12

    Article  Google Scholar 

  • Singh PK, Mishra SK, Jain MK (2014) A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods. Hydrol Sci J 59:239–261

    Article  Google Scholar 

  • Skeie RB, Berntsen T, Aldrin M, Holden M, Myhre G (2014) A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth Syst Dyn 5:139–175

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Smagorinsky J, Manabe S, Jr Holloway JL (1965) Numerical results from a nine-level general circulation model of the atmosphere. Mon Weather Rev 93:727–768

    Article  Google Scholar 

  • Snyder FF (1938) Synthetic unit-graphs. Trans Am Geophys Union 19:447–454

    Article  Google Scholar 

  • Snyder WM (1955) Hydrograph analysis by the method of least squares. Am Soc Civ Eng Proc 81:1–24

    Google Scholar 

  • Soltani A, Hoogenboom G (2003) Minimum data requirements for parameter estimation of stochastic weather generators. Clim Res 25:109–119

    Article  Google Scholar 

  • Sood A, Muthuwatta L, McCartney M (2013) A SWAT evaluation of the effect of climate change on the hydrology of the Volta river basin. Water Int 38:297–311

    Article  Google Scholar 

  • Soulis KX, Valiantzas JD (2012) SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds—the two-CN system approach. Hydrol Earth Syst Sci 16:1001–1015

    Article  Google Scholar 

  • Steele-Dunne S, Lynch P, McGrath R, Semmler T, Wang S, Hanafin J, Nolan P (2008) The impacts of climate change on hydrology in Ireland. J Hydrol 356:28–45

    Article  Google Scholar 

  • Stocker TF, Wright DG, Mysak LA (1992) A zonally averaged, coupled ocean–atmosphere model for paleoclimate studies. J Clim 5:773–797

    Article  Google Scholar 

  • Stommel H, Arons AB (1960) On the abyssal circulation of the world ocean-II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res 6:217–233

    Google Scholar 

  • Stommel H, Veronis G (1957) Steady convective motion in a horizontal layer of fluid heated uniformly from above and cooled non-uniformly from below. Tellus 9:401–407

    Article  Google Scholar 

  • Stone PH (1972) A simplified radiative-dynamical model for the static stability of rotating atmospheres. J Atmos Sci 29:405–418

    Article  Google Scholar 

  • Stone PH, Yao MS (1987) Development of a two-dimensional zonally averaged statistical-dynamical model. Part II: the role of eddy momentum fluxes in the general circulation and their parameterization. J Atmos Sci 44:3769–3786

    Article  Google Scholar 

  • Stone PH, Yao MS (1990) Development of a two-dimensional zonally averaged statistical-dynamical model. Part III: the parameterization of the eddy fluxes of heat and moisture. J Clim 3:726–740

    Article  Google Scholar 

  • Tabari H, Grismer ME, Trajkovic S (2011) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31:107–117

    Article  Google Scholar 

  • Tarboton DG (1994) Measurement and modeling of snow energy balance and sublimation from snow. International Snow Science Workshop, Snowbird, Utah

    Google Scholar 

  • Tarboton DG, Luce CH (1996) Utah energy balance snow accumulation and melt model (UEB). Computer model technical description and users guide. Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station, USA

  • Tarboton DG, Chowdhury TG, Jackson TH (1995) A spatially distributed energy balance snowmelt model, in biogeochemistry of seasonally snow-covered catchments. Proceedings of a Boulder Symposium. IAHS 228:141–155

    Google Scholar 

  • Taulis ME, Milke MW (2005) Estimation of WGEN weather generation parameters in arid climates. Ecol Model 184:177–191

    Article  Google Scholar 

  • Taye MT, Willems P, Block P (2015) Implications of climate change on hydrological extremes in the Blue Nile basin: a review. J Hydrol Reg Stud 4:280–293

    Article  Google Scholar 

  • Taylor AB, Schwarz HE (1952) Unit hydrograph lag and peak flow related to basin characteristics. Trans Am Geophys Union 33:235–246

    Article  Google Scholar 

  • Teutschbein C (2013) Hydrological modelling for climate change impact assessment. PhD Thesis, Stockholm University, Sweden

  • Teutschbein C, Seibert J (2010) Regional climate models for hydrological impact studies at the catchment scale: a review of recent modelling strategies. Geogr Compass 4:834–860

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2013) Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol Earth Syst Sci 17:5061–5077

    Article  Google Scholar 

  • Thodsen H (2007) The influence of climate change on stream flow in Danish rivers. J Hydrol 333:226–238

    Article  Google Scholar 

  • Thomsen R (1990) Effect of climate variability and change in groundwater in Europe. Nord Hydrol 21:185–194

    Google Scholar 

  • Tian Y, Xu YP, Zhang XJ (2013) Assessment of climate change impacts on river high flows through comparative use of GR4J, HBV and Xinanjiang models. Water Resour Manag 27:2871–2888

    Article  Google Scholar 

  • Toggweiler JR, Key RM (2001) Thermohaline circulation. In: Encyclopedia of ocean sciences. Academic, London, pp 2941–2947

    Chapter  Google Scholar 

  • Toshiharu K (2005) Hydrological river basin environment assessment model (Hydro-BEAM). CRC Press, Watershed models, p 613

    Google Scholar 

  • Tramblay Y, Ruelland D, Somot S, Bouaicha R, Servat E (2013) High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco. Hydrol Earth Syst Sci 17:3721–3739

    Article  Google Scholar 

  • Trigo R, Palutikof J (2001) Precipitation scenarios over Iberia: a comparison between direct GCM output and different downscaling techniques. J Clim 16:4422–4446

    Article  Google Scholar 

  • Trzaska S, Schnarr E (2014) A review of downscaling methods for climate change projections. United States Agency for International Development by Tetra Tech ARD, pp 1–42

  • USACE (2000) Hydrological modeling system HEC-HMS: technical reference manual. US Army Corps of Engineers. Hydrologic Engineering Center, Davis

    Google Scholar 

  • Valipour M (2015) Comparative evaluation of radiation-based methods for estimation of potential evapotranspiration. J Hydrol Eng 20:04014068

    Article  Google Scholar 

  • Van den Hurk B, Hirschi M, Schar C, Lenderink G, van Meijgaard E, van Ulden A, Rockel B, Hagemann S, Graham P, Kjellstrom E, Jones R (2005) Soil control on runoff response to climate change in regional climate model simulations. J Clim 18:3536–3551

    Article  Google Scholar 

  • Varis O, Kajander T, Lemmela R (2004) Climate and water: from climate models to water resources management and vice versa. Clim Chang 66:321–344

    Article  Google Scholar 

  • VonStorch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Clim 6:1161–1171

    Article  Google Scholar 

  • Vrac M, Drobinski P, Merlo A, Herrmann M, Lavaysse C, Li L, Somot S (2012) Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment. Nat Hazards Earth Syst Sci 12:2769–2784

    Article  Google Scholar 

  • Wang WC, Domoto GA (1974) The radiative effect of aerosols in the earth’s atmosphere. J Appl Meteorol 13:521–534

    Article  Google Scholar 

  • Warner TT, Peterson RA, Treadon RE (1997) A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull Am Meteorol Soc 78:2599–2617

    Article  Google Scholar 

  • Weaver AJ, Hughes TMC (1996) On the incompatibility of ocean and atmosphere models and the need for flux adjustments. Clim Dyn 12:141–170

    Article  Google Scholar 

  • Weaver AJ, Sarachik ES (1991) The role of mixed boundary conditions in numerical models of the ocean’s climate. J Phys Oceanogr 2:1470–1493

    Article  Google Scholar 

  • Weibull W (1939) The phenomenon of ruptures in solids. Proc R Swed Inst Eng Res 153:1–55

    Google Scholar 

  • Welander P (1959) An advective model of the ocean thermocline. Tellus 11:309–318

    Article  Google Scholar 

  • Wetherald RT, Manabe S (1972) Response of the joint ocean–atmosphere model to the seasonal variation of the solar radiation. Mon Weather Rev 100:42–59

    Article  Google Scholar 

  • White D, Richman M, Yarnal B (1991) Climate regionalization and rotation of principal components. Int J Climatol 11:1–25

    Article  Google Scholar 

  • Widmann M, Bretherton CS, Salathe EP (2003) Statistical precipitation downscaling over the Northwestern United States using numerically simulated precipitation as a predictor. J Clim 16:799–816

    Article  Google Scholar 

  • Wigley TML, Raper SCB (2002) Reasons for larger warming projections in the IPCC Third Assessment Report. J Clim 15:2945–2952

    Article  Google Scholar 

  • Wigley TML, Jones PD, Briffa KR, Smith G (1990) Obtaining sub-grid-scale information from coarse-resolution general circulation model output. J Geophys Res 95:1943–1953

    Article  Google Scholar 

  • Wigmosta MS, Burges SJ (1997) An adaptive modeling and monitoring approach to describe the hydrologic behavior of small catchments. J Hydrol 202:48–77

    Article  Google Scholar 

  • Wigmosta MS, Lettenmaier DP (1999) A comparison of simplified methods for routing topographically-driven subsurface flow. Water Resour Res 35:255–264

    Article  Google Scholar 

  • Wigmosta MS, Vail LW, Lettenmaier DP (1994) A distributed hydrology-vegetation model for complex terrain. Water Resour Res 30:1665–1679

    Article  Google Scholar 

  • Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Pro Phys Geogr 21:530–548

    Article  Google Scholar 

  • Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34:2995–3008

    Article  Google Scholar 

  • Wilby RL, Hay LE, Leavesley GH (1999) A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan river basin, Colorado. J Hydrol 225:67–91

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17:145–157

    Article  Google Scholar 

  • Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. Intergovernmental Panel on Climate Change (IPCC), task group on data and scenario support for impacts and climate analysis (TGICA). https://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf. Accessed 29 May 2016

  • Wilks DS (1992) Adapting stochastic weather generation algorithms for climate change studies. Clim Chang 22:67–84

    Article  Google Scholar 

  • Wilks DS (1999a) Multisite downscaling of daily precipitation with a stochastic weather generator. Clim Res 11:125–136

    Article  Google Scholar 

  • Wilks DS (1999b) Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric For Meteorol 93:153–169

    Article  Google Scholar 

  • Williams JR, Nicks AD, Arnold JG (1985) Simulator for water resources in rural basins. J Hydraul Eng 111:970–986

    Article  Google Scholar 

  • Xu CY (1999a) Climate change and hydrologic models: a review of existing gaps and recent research developments. Water Resour Manag 13:369–382

    Article  Google Scholar 

  • Xu CY (1999b) From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches. Pro Phys Geogr 23:229–249

    Article  Google Scholar 

  • Xu Z, Yang ZL (2015) A new dynamical downscaling approach with GCM bias corrections and spectral nudging. J Geophys Res Atmos 120:3063–3084

    Article  Google Scholar 

  • Xu Y, Gao X, Zhu Q, Zhang Y, Kang L (2014) Coupling a regional climate model and a distributed hydrological model to assess future water resources in Jinhua river basin, east China. J Hydrol Eng 20:04014054

    Article  Google Scholar 

  • Yang Z, Han D (2006) Derivation of unit hydrograph using a transfer function approach. Water Resour Res 42:W01501

    Google Scholar 

  • Yao MS, Stone PH (1987) Development of a two-dimensional zonally averaged statistical-dynamical model. Part I: the parameterization of moist convection and its role in the general circulation. J Atmos Sci 44:65–82

    Article  Google Scholar 

  • Yarnal B, Comrie AC, Frakes B, Brown DP (2001) Developments and prospects in synoptic climatology. Int J Climatol 21:1923–1950

    Article  Google Scholar 

  • Zeng XJ, Singh MG (1996) Approximation accuracy analysis of fuzzy systems as function approximators. IEEE Trans Fuzzy Syst 4:44–63

    Article  Google Scholar 

  • Zhang DL, Chang HR, Seaman NL, Warner TT, Fritsch JM (1986) A two-way interactive nesting procedure with variable terrain resolution. Mon Weather Rev 114:1330–1339

    Article  Google Scholar 

  • Zhao LL, Xia J, Xu CY, Wang Z, Sobkowiak L, Long C (2013) Evapotranspiration estimation methods in hydrological models. J Geogr Sci 23:359–369

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to the editor and anonymous reviewers for their insightful and valuable comments, which enabled us to improve the manuscript to the present state.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanchal Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, R., Patel, N. & Krishna, A.P. Climate and hydrological models to assess the impact of climate change on hydrological regime: a review. Arab J Geosci 9, 544 (2016). https://doi.org/10.1007/s12517-016-2561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2561-0

Keywords

Navigation