Skip to main content
Log in

Fault-controlled, bedding-parallel dolomite in the middle Jurassic Samana Suk Formation in Margalla Hill Ranges, Khanpur area (North Pakistan): petrography, geochemistry, and petrophysical characteristics

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This study deals with superb fault-controlled, bedding-parallel dolomite in the shallow marine platform carbonates of the Samana Suk Formation (middle Jurassic), southern Hazara basin, NW Pakistan. Field observations, petrographic studies, mineralogical and isotopic analyses, and porosity-permeability analyses allow to unravel the diagenetic evolution of documented diagenetic phases and their impact on the reservoir behavior. Various diagenetic phases are recognized, which include (i) two episodes of replacive dolomites (Dol. I and Dol. II), (ii) initial phase of white calcite cement (WC-I), (iii) saddle dolomite (SD), (iv) late phase of white calcite cement (WC-II), and (v) transparent calcite cement (TC). In addition, other diagenetic features are bedding-parallel stylolites (PBSs), cataclastic deformation, and dissolution. Stable C- and O-isotope signatures confirmt that elevated temperature fluids resulted in the formation of the various dolomite and calcite phases. Porosity-permeability studies revealed enhanced porosity in the replacive dolomite (i.e., Dol. I and Dol. II), but late stage cementation in relation to calcite and dolomite cementation showed adverse effect on the reservoir quality. Furthermore, diagenetic alterations (i.e., brecciation and dissolution) along faults contributed in the enhancement of reservoir properties.

In conclusion, dolomitization occurred due to the percolation of Mg-rich fluids along the Haro Fault and its splays. Dewatering of basinal fluids from the underlying siliciclastic rocks or deep and hot hydrothermal fluids may be the possible source of dolomitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahsan N, Chaudhry MN (2008) Geology of Hettangian to middle Eocene rocks of Hazara and Kashmir Basins, Northwest Lesser Himalayas. Pakistan Geol Bull Punjab Univ 43:131–152

    Google Scholar 

  • Ali JR and Aitchison J (2008) Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). 88(3–4), 145–166

  • Angiolini L, Balini M, Garzanti E, Nicora A, Tintori A (2003) Gondwana deglaciation and opening of neotethys: the Al Khlata and Saiwan Formations of interior Oman. Palaeogeogr Palaeoclimatol Palaeoecol 19:699–123

    Google Scholar 

  • Bullen SB, Sibley DF (1984) Dolomite selectivity and mimic replacement. Geology 12:655–658

    Article  Google Scholar 

  • Burg JP (2011) The Asia-Kohistan-India collision: review and discussion. In: Brown D, Ryan PD (eds) Arc-Continent Collision, Frontiers in Earth Sciences. Springer-Verlag, Berlin, pp. 279–309

    Chapter  Google Scholar 

  • Calkins JA, Offield T W and Abdullah SKM (1975) Geology of the Southern Himalayas in Hazara, Pakistan and adjacent areas. Geological Investigation in Pakistan. p.124

  • Chatterjee S, Scotese CR (2010) The wandering Indian plate and its changing biogeography during the late Cretaceous-early Tertiary period. Ed. New Aspects of Mesozoic Biodiversity. Lect Notes Earth Sci 132:105–126

    Article  Google Scholar 

  • Chatterjee S, Goswami A, Scotese CR (2013) The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res 23:238–267

    Article  Google Scholar 

  • Chaudhry MN, Ahsan N, and Ghazanfar M (1998) A preliminary account of sedimentology of Hazara Basin from Jurassic to Eocene: Abstract volume 13th Himalaya-Karakoram-Tibet Workshop, Peshawar, pp. 41–43

  • Choquette PW, James NP (1988) Introduction. In: James NP, Choquette PW (eds) Paleokarst. Springer-verlag, New York, pp. 1–21

    Chapter  Google Scholar 

  • Coward MP, Butler RWH, Chambers AF, Graham RH, Izatt CN, Khan MA, Knipe RJ, Prior DJ, Treloar PJ, Williams MP (1988) Folding and imbrications of the Indian crust during the Himalayan collision. Philos Trans R Soc Lond A326:89–116

    Article  Google Scholar 

  • Davies GR, and Smith LB Jr (2006) Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90(11):1641–1690

  • Dewit J, Huysmans M, Muchez P, Hunt DW, Thurmond JB, Verges J, Saura E, Fernandez N, Romaire I, Esestime P, Swennen R (2012) Reservoir characteristics of fault controlled hydrothermal dolomite bodies: Ramales Platform case study. In: Garland J, Neilson JE, Laubach SE, Whidden KJ (eds) Advances in Carbonate Exploration and Reservoir Analysis, Geological Society of London. Special Publications 370, London, pp. 83–109

    Google Scholar 

  • Dickson JAD (1966) Carbonate identification and genesis as revealed by staining. J Sediment Petrol 36:491–505

    Google Scholar 

  • Ferrill DA, Morris P, Evans MA, Burkhard M, Groshong RH, Onasch CM (2004) Calcite twin morphology: a low-temperature deformation geothermometer. J Struct Geol 26(8):1521–1529

    Article  Google Scholar 

  • Fursich FT, Callomon JH, Pandey DK, Jaitly AK (2004) Environments and faunal pattern in the Kachh Rift Basin, western India, during Jurassic. Riv Ital Paleontol Stratigr 110:181–190

    Google Scholar 

  • Garzanti E (1993) Sedimentary evolution and drowning of a passive margin shelf Giumal Group; Zanskar Tethys Himalaya, India: palaeoenvironmental changes during final break-up of Gondwanaland, in P.J. Treloar and M.P. Searle, eds. Himalayan Tectonics. Geol Soc Spec Pub 74:277–298

    Article  Google Scholar 

  • Gomez-Rivas E, Corbella M, Martín-Martín JD, Stafford SL, Teixell A, Bons PD, Cardellach E (2014) Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the Benicassim outcrop analogue (Maestrat Basin, E Spain). Mar Pet Geol 55:26–42

    Article  Google Scholar 

  • Gonzales-Casado JM, Garcia-Cuevas C (1999) Calcite twins from microveins as indicators of deformation history. J Struct Geol 21:875–889

    Article  Google Scholar 

  • Hendry JP, Gregg JM, Shelton KL, Somerville ID, Crowley SF (2015) Origin, characteristics and distribution of fault-related and fracture-related dolomitization: insights from Mississippian carbonates. Isle Of Man, Sedimentology 62:717–752

    Article  Google Scholar 

  • Kazmi, AH and Jan MQ (1997) Geology and tectonics of Pakistan. Graphic Publishers Pakistan, 554

  • Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT, Stockli L (2009) Did Kohistan-Ladakh island arc collide first with India? Geol Soc Am Bull 121:366–384

    Article  Google Scholar 

  • Lacombe O (2010) Calcite twins, a tool for tectonic studies in thrust belts and stable orogenic forelands. Oil & Gas Science and Technology–rev. IFP Energies Nouvelles 65(6):809–838

    Article  Google Scholar 

  • Lacombe O, Amrouch K, Mouthereau F, Dissez L (2007) Calcite twinning constraints on late Neogene stress patterns and deformation mechanisms in the active Zagros collision belt. Geology 35(3):263–266

    Article  Google Scholar 

  • Lee T, Lawver LA (1995) Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251(1–4):85–138

    Article  Google Scholar 

  • Lopez-Horgue MA, Iriarte E, Schroder S, Fernandez-Mediola PA, Caline B, Corneyllie H, Fremont J, Sudrie M, Zerti S (2010) Structurally controlled hydrothermal dolomites in Albian carbonates of the Ason Valley, Basque Cantabrian Basin. Northern Spain Mar Pet Geol 27(5):1069–1092

    Article  Google Scholar 

  • Lucia, F. J. and Major, R. P. (1994). Porosity evolution through hypersaline reflux dolomitization. In: Purser, B. H., Tucker, M. E and Zenger, D. H. Eds, Dolomites, a volume in honor of Dolomieu. Int. Assoc. Sedimentology. Spec. Publ. 21, 325–341.

  • Lumsden DN (1979) Discrepancy between thin section and X-ray estimates of dolomite in limestone. J Sediment Petrol 49:429–436

    Google Scholar 

  • Martín-Martín JDA, Trave A, Gomez-Rivas E, Salas R, Sizun JP, Verges J, Corbella M, Stafford SL, Alfonso P (2015) Fault-controlled and stratabound dolostones in the Late Aptian-earliest Albian Benassal Formation (Maestrat Basin, E Spain): petrology and geochemistry constrains. Mar Pet Geol 65:83–102

    Article  Google Scholar 

  • McKenzie D, Sclater JG (1971) The evolution of the Indian Ocean since the Late Cretaceous. Geophys J Int 24(5):437–528

    Article  Google Scholar 

  • Meyers WJ (1991) Calcite cement stratigraphy. In: C.E. Baker and O.C. Kopp (eds), luminescence microscopy and spectroscopy: qualitative and quantitative aspects. SEPM Short Course 25:133–148

    Google Scholar 

  • Murray RC, Lucia FJ (1967) Cause and control of dolomite distribution by rock selectivity. Geol Soc Am Bull 78:21–35

    Article  Google Scholar 

  • Nader FH, Dumont C, Shah MM, Garcia D, Swennen R, Daniel J-M, Lerat O, and Doligez B (2009) From field study to numerical modelling of hydrothermal dolomitization in Early Cretaceous platform carbonates (Cantabrian mountains, northern Spain). J Geochem Explor, 101, pp. 73

  • Nielsen P, Swennen R, Keppens E (1994) Multiple-step recrystallization within massive ancient dolomite units: an example from the Dinantian of Belgium. Sedimentology 41:567–584

    Article  Google Scholar 

  • Niemann JC, Read JF (1988) Regional cementation from unconformity-recharge aquifer and burial fluids. Mississipian Newman Limestone, Kentucky. J Sed Petrol 58:688–705

    Google Scholar 

  • Patriat P, Achache J (1984) India-Eurasia collision chronology and its implications for crustal shortening and driving mechanisms of plates. Nature 311:615–621

    Article  Google Scholar 

  • Radke BM, Mathis RL (1980) On the formation and occurrence of saddle dolomite. J Sediment Res 50(4):1149–1168

    Google Scholar 

  • Reeder RJ (1991) An over-view of zoning in carbonate minerals. In: C.E. Baker and O.C. Kopp (Eds), luminescence microscopy and spectroscopy: Qualitative and quantitative aspects. SEPM short course 25, pp. 77–82

  • Reuber I (1986) Geometry of accretion and oceanic thrusting of the Spongtang ophiolite, Ladakh-Himalaya. Nature 321:592–596

    Article  Google Scholar 

  • Rosenbaum J, Sheppard SM (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150

    Article  Google Scholar 

  • Rowley DB (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planetary Lett 145:1–13

    Article  Google Scholar 

  • Searl A (1989) Saddle dolomite: a new view of its nature and origin. Mineral Mag 53(5):547–555

    Article  Google Scholar 

  • Sengor, A. M. C., Altiner, D., Cin, A., Ustaomer, T. and Hsu, K.J. (1988). Origin and assembly of the Tethyside orogenic collage at the expense of Gondwanaland. In: Audley-Charles, M.G. & Hallam, A. Eds. Gondwana and Tethys. Geol. Soc. Lond., Spec Publ 37: 81–119.

  • Shah SMI (1977) Stratigraphy of Pakistan. Geol Surv Pakistan, Quetta, Mem Geol Surv 12:138

    Google Scholar 

  • Sharp I, Gillespie P, Morsalnezhad D, Taberner C, Karpuz R, Verges J, Horbury A, Pickard N, Garland J, Hunt D (2010) Stratigraphic architecture and fracture-controlled dolomitization of the Cretaceous Khami and Bangestan groups: an outcrop case study, Zagros Mountains, Iran. In: van Buchem FSP, Gerdes KD, Esteban M (eds) Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East: Stratigraphic and Diagenetic Reference Models. Geol. Soc, Lond. Sp. Publ. 329, London, pp. 343–396

    Google Scholar 

  • Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Petrol 57:967–975

    Google Scholar 

  • Van der Voo R, Spakman W, Bijwaard H (1999) Tethyan subducted slabs under India. Earth Planet Sci Lett 171:7–20

    Article  Google Scholar 

  • Vandeginste V, John CM, Cosgrove JW, Manning C (2014) Dimensions, texture distribution, and geochemical heterogeneities of fracture-related dolomite geobodies hosted in Ediacaran Limestones, Northern Oman. AAPG Bull 98(9):1789–1809

    Article  Google Scholar 

  • Wachter E and Hayes JM (1985) Exchange of oxygen isotopes in carbon-dioxidephosphoric acid systems. Chem Geol, 52, 365–374

  • Yeats RS, Hussain A (1987) Timing of structural events in the Himalayan foothills of northern Pakistan. J Geol Soc London 153:677–680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumtaz Muhammad Shah.

Additional information

This article is a part of Topical Collection on Arabian Plate: Lithosphere Dynamics, Sedimentary Basins &; Geohazards

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M.M., Ahmed, W., Ahsan, N. et al. Fault-controlled, bedding-parallel dolomite in the middle Jurassic Samana Suk Formation in Margalla Hill Ranges, Khanpur area (North Pakistan): petrography, geochemistry, and petrophysical characteristics. Arab J Geosci 9, 405 (2016). https://doi.org/10.1007/s12517-016-2413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2413-y

Keywords

Navigation