Skip to main content
Log in

Petrography and geochemistry of the Middle Siwalik sandstones (tertiary) in understanding the provenance of sub-Himalayan sediments in the Lish River Valley, West Bengal, India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A petrography–geochemistry-based evaluation of the provenance of the sandstones of the Tertiary Middle Siwalik Subgroup in the Lish River Valley, West Bengal, is presented. The framework grains in the sandstones suggest mixing of sediments from spatially separated gneissic, quartzitic and phyllitic source rocks. Modal values of different framework minerals suggest that recycled sediments in an orogenic setting were deposited in the Middle Siwalik basin in the area. The major and trace element ratios suggest dominantly felsic input and mixing with subordinate basic material in an upper continental crustal setup. The major and trace element data also indicate that rocks of a passive margin setting acted as the source to the sediments. The present paper postulates that the Middle Siwalik sediments were derived from pre-Himalayan gneissic and metabasic rocks of an erstwhile passive margin setting and presently forming the Higher and Lesser Himalaya, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharyya SK (1994) The Cenozoic Foreland Basin and tectonics of the eastern sub-Himalaya: problems and prospects. In: Kumar R, Ghosh SK, Phadtare NR (eds) Siwalik foreland basin of Himalaya. Himal Geol 15:3–21

    Google Scholar 

  • Acharyya SK, Shastry MVA (1979) Stratigraphy of the Eastern Himalaya. Himal Geol Semin New Delhi Geol Surv India Misc Publ 41:49–64

    Google Scholar 

  • Ahmad T, Harris NBW, Islam R, Khanna PP, Sachan HK, Mukherjee BK (2005) Contrasting mafic magmatism in the Shyok and Indus suture zones: geochemical constraints. Himal Geol 26:33–40

    Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

    Book  Google Scholar 

  • Allen JRL (1973) A classification of climbing-ripple cross-lamination. J Geol Soc 129:537–541

    Article  Google Scholar 

  • Amajor LC (1987) Major and trace element geochemistry of Albian and Turonian shales from the Southern Benue trough, Nigeria. J Afr Earth Sci 6:633–641

    Google Scholar 

  • Armstrong-Altrin JS, Verma SP (2005) Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sediment Geol 177(1):115–129

    Article  Google Scholar 

  • Armstrong-Altrin JS, Verma SP, Madhavaraju J, Ramaswami S (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, Southern India: implications for provenance, weathering and tectonic setting. J Sediment Res 74(2):285–297

    Article  Google Scholar 

  • Asiedu DK, Suzuki S, Shibata T (2000) Geochemistry of Lower Cretaceous sediments, inner zone of southwest Japan: constraints on provenance and tectonic environment. Geochem J 34:155–173

    Article  Google Scholar 

  • Banerji I, Banerji S (1982) A coalescing alluvial fan model of the Siwalik sedimentation—a case study in the eastern Himalaya. Geol Surv India Misc Publ 41:1–12

    Google Scholar 

  • Basu A (2003) A perspective on quantitative provenance analysis. In: Valloni R, Basu A (eds) Quantitative provenance studies in Italy. Memorie Descrittive della Carta Geologica dell’Italia 61:11–22

    Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Article  Google Scholar 

  • Bhatia MR (1985) Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic controls. Sediment Geol 45:97–113

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Bhattacharyya K, Mitra G (2009) A new kinematic evolutionary model for the growth of a duplex—an example from the Rangit duplex, Sikkim Himalaya, India. Gondwana Res 16:697–715

    Article  Google Scholar 

  • Blatt H, Middleton G, Murray R (1980) Origin of sedimentary rocks. Prentice-Hall, , Englewood Cliffs, NJ

    Google Scholar 

  • Blenkinsop T (2002) Deformation microstructures and mechanisms in minerals and rocks. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Caracciolo L, Von Eynatten H, Tolosana-Delgado R, Critelli S, Manetti P, Marchev P (2012) Petrological, geochemical, and statistical analysis of Eocene–Oligocene sandstones of the Western Thrace Basin, Greece and Bulgaria. J Sediment Res 82(7):482–498

    Article  Google Scholar 

  • Casshyap SM, Tewari RC (1984) Fluvial models of the Lower Permian coal measures of Son-Mahanadi and Koel-Damodar Valley basins, India. Int Assoc Sedimentol Spec Publ 7:121–147

    Google Scholar 

  • Chakrabarti G, Shome D, Bauluz B, Sinha S (2009) Provenance and weathering history of Mesoproterozoic clastic sedimentary rocks from the basal Gulcheru Formation, Cuddapah Basin. J Geol Soc India 74:119–130

    Article  Google Scholar 

  • Chaudhri RS (1971) Petrogenesis of Cenozoic sediments of north-western Himalayas. Geol Mag 108:43–48

    Article  Google Scholar 

  • Condie KC (1991) Another look at rare earth elements in shales. Geochim Cosmochim Acta 55:2527–2531

    Article  Google Scholar 

  • Critelli S, Garzanti E (1994) Provenance of the Lower Tertiary Murree redbeds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas. Sediment Geol 89:265–284

    Article  Google Scholar 

  • Critelli S, Ingersoll RV (1994) Sandstone petrology and provenance of the Siwalik Group (northwestern Pakistan and western-southeastern Nepal). J Sediment Res A64(4):815–823

    Google Scholar 

  • Critelli S, De Rosa R, Platt JP (1990) Sandstone detrital modes in the Makran accretionary wedge, southwest Pakistan: implications for tectonic setting and long-distance turbidite transportation. Sediment Geol 68:241–260

    Article  Google Scholar 

  • Critelli S, Mongelli G, Perri F, Martin-Algarra A, Martin-Martin M, Perrone V, Dominici R, Sonnino M, Zaghloul MN (2008) Sedimentary evolution of the Middle Triassic-Lower Jurassic continental redbeds from Western-Central Mediterranean Alpine Chains based on geochemical, mineralogical and petrographical tools. J Geol 116:375–386

    Article  Google Scholar 

  • Crook KAW (1974) Lithogenesis and geotectonics: the significance of compositional variation in flysch arenites (graywackes). In: Dott Jr RH, Shaver RH (eds) Modern and ancient geosynclinal sedimentation. SEPM Spec Publ 19:304–310

    Google Scholar 

  • Cullers RL (1988) Mineralogical and chemical changes of soil and stream sediments formed by intense weathering of the Danberg granite, Georgia, USA. Lithos 21:301–314

    Article  Google Scholar 

  • Cullers RL (1994) The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age from uplifted blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Acta 22:4955–4972

    Article  Google Scholar 

  • Cullers RL (1995) The controls on major and trace element evolution of shales, siltstones, and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, USA. Chem Geol 123:107–131

    Article  Google Scholar 

  • Cullers RL, Stone J (1991) Chemical and mineralogical composition of the Pennsylvanian mountain, Colorado, USA (an uplifted continental blocks) to sedimentary rocks from other tectonics environments. Lithos 27:115–131

    Article  Google Scholar 

  • de Luchi MGL, Hoffmann A, Siegesmund S, Wemmer K, Steenken A (2002) Temporal constraints on the polyphase evolution of the Sierra de San Luis. Preliminary report based on biotite and muscovite cooling ages. In: Cabaleri N, Linares E, López de Luchi MG, Ostera H, Panarello H (eds) Actas 15° Congreso Geológico Argentino (Proceedings of 15th Argentine Geological Congress), 1:309–315

  • Decelles PG, Gehrels GE, Quade J, Ojha TP, Kapp PA, Upreti BN (1998) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Geol Soc Am Bull 110(1):2–21

    Article  Google Scholar 

  • Dickinson WR (1970) Interpreting detrital modes of greywacke and arkose. J Sediment Petrol 40:695–707

    Google Scholar 

  • Dickinson WR (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa GG (ed) Provenance of Arenites. Reidel Publishing Co, Dordrecht, Netherlands, pp 333–361

    Chapter  Google Scholar 

  • Dickinson WR (1988) Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: Kleinspehn KL, Paola C (eds) New perspectives in basin analysis. Springer, New York, pp 3–25

    Chapter  Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. AAPG Bull 63:2164–2182

    Google Scholar 

  • Dickinson WR, Beard SL, Brakenridge RG, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryherg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235

    Article  Google Scholar 

  • Dinelli E, Testa G, Cortecci G, Barbieri M (1999) Stratigraphic and petrographic constraints to trace element and isotope geochemistry of Messinian sulfates of Tuscany. Memorie della Societa Geologica Italiana (Mem Italian Geol Soc) 54:61–74

    Google Scholar 

  • Dorsey RJ (1988) Provenance evolution and unroofing history of a modern arc-continent collision: evidence from petrography of Plio-Pleistocene sandstones, eastern Taiwan. J Sediment Petrol 58:208–218

    Google Scholar 

  • Dreyer T (1993) Quantified fluvial architecture in ephemeral stream deposits of the Esplugafreda Fm. (Paleocene), Tremp-Graus Basin, N Spain. Int Assoc Sedimentologists, Spec Publ 17:337–362

    Google Scholar 

  • Folk RL (1974) The petrology of sedimentary rocks. Hemphill Publishing Co., Austin, Texas

    Google Scholar 

  • Franzinelli E, Porter PE (1983) Petrology, chemistry and texture of modern river sands, Amazon river system. J Geol 91:23–39

    Article  Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Wiley, New York

    Google Scholar 

  • Garzanti E, Vezzoli G (2003) A classification of metamorphic grains in sands based on their composition and grade. J Sediment Res 73:830–837

    Article  Google Scholar 

  • Garzanti E, Critelli S, Ingersoll RV (1996) Paleogeographic and paleotectonic evolution of the Himalayan Range as reflected by detrital modes of Tertiary sandstones and modern sands (Indus transect, India and Pakistan). Geol Soc Am Bull 108:631–642

    Article  Google Scholar 

  • Gazzi P (1966) Le Arenarie del Flysch Sopracretaceo dell’Appennino Modenese: Correlazioni con il Flysch di Monghidoro. Miner Petrograf Acta 12:69–97

    Google Scholar 

  • Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The North American shale composite: its compilation and major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482

    Article  Google Scholar 

  • Hiscott R (1984) Ophiolitic source rocks for Taconic-age flysch: trace element evidence. Geol Soc Am Bull 95:1261–1267

    Article  Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350

    Article  Google Scholar 

  • Holocombe RJ (1994) GEOrient—an integrated structural plotting package for MS-Windows. Geol Soc Aust Abstr 36:73–74

    Google Scholar 

  • Ibbeken H, Schleyer R (1991) Source and sediment. Springer, Berlin

    Book  Google Scholar 

  • Ingersoll RV, Bullard TF, Ford RL, Grimm JP, Pickle JD, Sares SW (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point counting method. J Sediment Petrol 54:103–106

    Google Scholar 

  • Kroonenberg SB (1994) Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. Proceedings of the 29th International Geological Congress, Part A. Kyoto, Japan, 69–81

  • Kumar R, Tandon SK (1985) Sedimentology of Plio-Pleistocene late orogenic deposits associated with intra-plate subduction—the Upper Siwalik Sub-group of a part of Punjab sub-Himalaya, India. Sediment Geol 42:105–158

    Article  Google Scholar 

  • Kundu A, Matin A, Mukul M, Eriksson PG (2011) Sedimentary facies and soft-sediment deformation structures in the Late Miocene-Pliocene Middle Siwalik Subgroup, eastern Himalaya, Darjiling district, India. J Geol Soc India 78:321–336

    Article  Google Scholar 

  • Kundu A, Matin A, Mukul M (2012) Depositional environment and provenance of Middle Siwalik sediments in Tista valley, Darjiling District, Eastern Himalaya, India. J Earth Syst Sci 121(1):73–89

    Article  Google Scholar 

  • Lee YI, Sheen DH (1998) Detrital modes of the Pyeongan Supergroup (Late Carboniferous-Early Triassic) sandstones in Samcheog coalfield, Korea: implications for provenance and tectonic setting. Sediment Geol 119(3–4):219–238

    Article  Google Scholar 

  • Liu Z, Colin C, Huang W, Le KP, Tong S, Chen Z, Trentesaux A (2007) Climaticand tectonic controls on weathering in South China and the Indochina Peninsula: clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochem Geophys Geosyst 8:Q05005. doi:10.1029/2006GC001490

    Google Scholar 

  • MacCarthy IAJ (1990) Alluvial sedimentation patterns in the Munster Basin, Ireland. Sedimentology 37:685–712

    Article  Google Scholar 

  • Mader D, Neubauer F (2004) Provenance of Paleozoic sandstones from the Carnic Alps (Austria): petrographic and geochemical indicators. Int J Earth Sci 93(2):262–281

    Article  Google Scholar 

  • Malik JN, Nakata T (2003) Active faults and related Late Quaternary de formation along the northwestern Himalayan frontal zone, India. Ann Geophys 46(5):917–936

    Google Scholar 

  • Mandal S, Sarkar S, Chakraborty N, Bose PK (2014) Palaeogeography, palaeohydraulics and palaeoclimate of the Mio-Pliocene Siwalik Group, eastern India. J Palaeogeogr 3(3):270–296. doi:10.3724/SP.J.1261.2014.00056

    Google Scholar 

  • Matin A, Mukul M (2010) Phases of deformation from cross-cutting structural relationships in external thrust sheets: insights from small-scale structures in the Ramgarh Thrust sheet, Darjiling Himalaya, West Bengal. Curr Sci India 99:1369–1377

    Google Scholar 

  • Maynard JB, Valloni R, Yu HS (1982) Composition of modern deep sea sands from arc related basins. Geol Soc Spec Publ 10:551–561

    Article  Google Scholar 

  • Mazumder R (2002) Sedimentation history of the Dhanjori and Chaibasa formations, eastern India and its implications. Unpublished Ph.D. Thesis, Jadavpur University, Kolkata, India

  • Mclennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral 21:169–200

    Google Scholar 

  • Mclennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:1021. doi:10.1029/2000GC000109

    Article  Google Scholar 

  • Mclennan SM, Taylor SR, Mcculloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050

    Article  Google Scholar 

  • Mclennan SM, Hemming S, Mcdaniel DK, Hanson GN (1993) Processes controlling the composition of clastic sediments. In: Johnson MJ, Basu A (eds) Geochemical approaches to sedimentation, provenance, and tectonics. Geol Soc Am Spec Pap 284:21–40

    Google Scholar 

  • Meigs AJ, Burbank DW, Beck RA (1995) Middle–late Miocene (>10 Ma) formation of the main boundary thrust in the western Himalaya. Geology 23(5):423–426

    Article  Google Scholar 

  • Miall AD (1977) A review of the braided-river depositional environment. Earth Sci Rev 13:1–62

    Article  Google Scholar 

  • Miall AD (1992) Alluvial deposits. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, Waterloo, Ontario, pp 119–142

    Google Scholar 

  • Miall AD (1996) The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology. Springer, Berlin

    Google Scholar 

  • Mishra B, Pandya KL, Maejima W (2004) Alluvial fan-lacustrine sedimentation and its tectonic implications in the Cretaceous Athgarh Gondwana Basin, Orissa, India. Gondwana Res 7(2):375–385

    Article  Google Scholar 

  • Mukul M (2000) The geometry and kinematics of the Main Boundary Thrust and related neotectonics in the Darjiling Himalayan fold-and-thrust belt, West Bengal, India. J Struct Geol 22:1261–1283

    Article  Google Scholar 

  • Najman Y, Garzanti E (2000) Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geol Soc Am Bull 112:435–449

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profile. J Geol 97:129–147

    Article  Google Scholar 

  • Neves MA, Morales N, Saad AR (2005) Facies analysis of tertiary alluvial fan deposits in the Jundiaí region, São Paulo, southeastern Brazil. J S Am Earth Sci 19:513–524

    Article  Google Scholar 

  • Nichols G (2009) Sedimentology and stratigraphy, 2nd edn. Willey-Blackwell, Sussex, UK

    Google Scholar 

  • Nichols GJ, Fisher JA (2007) Processes, facies and architecture of fluvial distributory system deposits. Sediment Geol 195:75–90

    Article  Google Scholar 

  • Opluštil S, Martínek K, Tasáryová Z (2005) Facies and architectural analysis of fluvial deposits of the Nýřany Member and the Týnec Formation (Westphalian D -Barruelian) in the Kladno-Rakovník and Pilsen basins. Bull Geosci 80(1):45–66

    Google Scholar 

  • Paikaray S, Banerjee S, Mukherji S (2005) Major element composition of Vindhyan shales and its importance in provenance interpretations. Indian J Geochem 20:37–52

    Google Scholar 

  • Paikaray S, Banerjee S, Mukherjee S (2008) Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: implications on provenance, tectonics and paleoweathering. J Asian Earth Sci 32:34–48

    Article  Google Scholar 

  • Parkash B, Sharma RP, Roy AK (1980) The Siwalik group (molasses)—sediments shed by collision of continental plates. Sediment Geol 25:127–159

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstones, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Potter PE (1986) South America and a few grains of sand, Pt. I. Beach sands. J Geol 94(3):301–319

    Article  Google Scholar 

  • Ragan DL (2009) Structural geology: an introduction to geometrical techniques, 4th edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Raiverman V (2002) Foreland sedimentation in Himalayan tectonic regime: a relook at the orogenic process. Bishen Singh Mahendra Pal Singh. Dehradun, India

    Google Scholar 

  • Ranjan N, Banerjee DM (2009) Central Himalayan crystallines as the primary source for the sandstone-shale suites of the Siwalik group: new geochemical evidence. Gondwana Res 16:687–696

    Article  Google Scholar 

  • Rao DR, Rai H (2006) Signatures of rift environment in the production of garnet-amphibolites and eclogites from Tso-Morari region, Ladhakh, India: a geochemical study. Gondwana Res 9:512–523

    Article  Google Scholar 

  • Reading HG, Levell BK (1996) Controls on the sedimentary record. In: Reading HG (ed) Sedimentary environments: processes, facies and stratigraphy. Blackwell Science, Oxford, pp 5–36

    Google Scholar 

  • Reineck HE, Singh IB (1975) Depositional sedimentary environments. Springer, Berlin

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, Edinburg Gate, United Kingdom

    Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O Na2O ratio. J Geol 9:635–650

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Roser BP, Cooper RA, Nathan S, Tulloch AJ (1996) Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terraines of the West Coast and Nelson, New Zealand. N Z J Geol Geophys 39:1–16

    Article  Google Scholar 

  • Rust BR (1972) Structure and process in a braided river. Sedimentology 18:221–246

    Article  Google Scholar 

  • Sadler SP, Kelly SB (1993) Fluvial processes and cyclicity in terminal fan deposits: an example from the Late Devonian of southwest Ireland. Sediment Geol 85:375–386

    Article  Google Scholar 

  • Saini NK, Mukherjee PK, Rathi MS, Khanna PP (2000) Evaluation of energy dispersive X-ray fluorescence spectrometry in the analysis of silicate rocks using pressed powder pellets. X-Ray Spectrom 29: 166–172

  • Schwan W (1980) shortening structures in eastern and northwestern Himalayan rocks. In: Saklani PS (ed) Current trends in geology, series-3. Today & Tomorrow Publishers, New Delhi, pp 1–62

  • Selley R (1985) Ancient sedimentary environments: and their sub-surface diagnosis, 3rd edn. Cornell University Press, Ithaca, New York

    Book  Google Scholar 

  • Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc 133(3):191–213

    Article  Google Scholar 

  • Sinha Roy S (1967) Tectonic evolution of the Darjiling Himalayas. Quart J Geol Min Metall Soc India 48:167–178

    Google Scholar 

  • Sinha S, Islam R, Ghosh SK, Kumar R, Sangode J (2007) Geochemistry of Neogene Siwalik mudstones along Punjab re-entrant, India: implications for source-area weathering, provenance and tectonic setting. Curr Sci India 92:1103–1113

    Google Scholar 

  • Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, United Kingdom

    Google Scholar 

  • Valdiya KS (1980) Geology of the Kumaon Lesser Himalaya. Wadia Institute of Himalayan Geology. Dehra Dun, India

    Google Scholar 

  • Von Eynatten H, Barceló-Vidal C, Pawlowsky-Glahn V (2003) Composition and discrimination of sandstones: a statistical evaluation of different analytical methods. J Sediment Res 73(1):47–57

    Article  Google Scholar 

  • Weltje GJ (2002) Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth Sci Rev 57:211–253

    Article  Google Scholar 

  • Wysocka A (2009) Sedimentary environments of the Neogene basins associated with the Cao Bang –Tien Yen Fault, NE Vietnam. Acta Geol Poloni 59(1): 45–69

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zakir Hossain HM, Sultan-Ul-Islam M, Ahmed SS, Hossain I (2002) Analysis of sedimentary facies and depositional environments of the Permian Gondwana sequence in borehole GDH-45, Khalaspir Basin, Bangladesh. Geosci J 6(3):227–236

    Article  Google Scholar 

  • Zavala C (2008) Towards a genetic facies tract for the analysis of hyperpycnal deposits. American Association of Petroleum Geologists, Hedberg Conference, March 3–7, Ushuaia-Patagonia, Argentina, Abstracts, 50–51

  • Zielinski T, van Loon AJ (1999a) Subaerial terminoglacial fans I: a semi-quantitative sedimentological analysis of the proximal environment. Neth J Geosci 77:1–15

    Article  Google Scholar 

  • Zielinski T, van Loon AJ (1999b) Subaerial terminoglacial fans II: a semi-quantitative sedimentological analysis of the middle and distal environments. Neth J Geosci 78:73–85

    Article  Google Scholar 

Download references

Acknowledgments

Abhik Kundu acknowledges the UGC, India, for the research grant PSW-035/10-11 (ERO), and PGE thanks the University of Pretoria and National Research Foundation of South Africa for funding. The authors acknowledge Dr. P. P. Khanna, Wadia Institute of Himalayan Geology, for chemical analysis of the samples. Help extended by Dr. Dipak Kumar Kar, Dr. Biswajit Ghosh, Reetom Chaudhuri and Debaditya Bandyopadhyay is also appreciated. The authors are thankful to the editor and anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhik Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Matin, A. & Eriksson, P.G. Petrography and geochemistry of the Middle Siwalik sandstones (tertiary) in understanding the provenance of sub-Himalayan sediments in the Lish River Valley, West Bengal, India. Arab J Geosci 9, 162 (2016). https://doi.org/10.1007/s12517-015-2261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2261-1

Keywords

Navigation