Impact of desert dust events on short- and long-wave radiation at the surface over south-eastern Italy

Original Paper
Part of the following topical collections:
  1. DUST


Clear-sky short-wave (SW) and long-wave (LW) irradiance measurements at the surface were combined with AErosol RObotic NETwork (AERONET) sun/sky photometer aerosol products to study the desert dust impact on irradiance measurements at a Central Mediterranean site during the year 2012, by comparing measurements performed on dusty and dust-free days. Daily mean values of both the aerosol Ångström exponent (Å), calculated from the aerosol optical depths (AOD) at 440 and 870 nm retrieved from AERONET sun/sky photometer measurements, and the desert dust loading (DL) from the Barcelona Supercomputing Center Dust REgional Atmospheric Model (BSC-DREAM8b) were used to select dusty days. In particular, we have identified as dusty days the ones characterized by Å values less than 0.9 and DL values larger than 0.5 g m−2. The desert dust events occurred from March to September during the analyzed year, in which we have identified 30 and 96 clear-sky dusty and dust-free days, respectively. The daytime SW and LW downward fluxes (FDN) on average decreased by 8 % and increased by 3 %, respectively, on the dusty days with respect to the dust-free ones. These flux variations were associated with an average increase of 40 % of the AOD at 440 nm and an average decrease of 39 % of the fine mode fraction (η) at 500 nm. The daily means of SW- and LW-FDN were reasonably correlated with the corresponding AOD and η values on the dusty days, revealing that the increase of the coarse mode particle contribution was mainly responsible for the flux changes. Conversely, both the SW- and the LW-FDN values were not correlated with the corresponding AOD and η values on the dust-free days.


Desert dust Irradiance measurements Dusty day identification Columnar aerosol properties 



S. Romano has carried out this work with the support of a PhD fellowship from the Mathematics and Physics Department of the Salento University. This work has been supported by the European Community through the ACTRIS Research Infrastructure Action under the 7th Framework Program, ACTRIS Grant Agreement no. 262254. The authors would like to acknowledge the Barcelona Super-Computing Center for the provision of the DREAM8b DL data. The NOAA Air Resources Laboratory is kindly acknowledged for the provision of the HYSPLIT back trajectories. MODIS data were made available from the Goddard Laboratory sciences Data Center.


  1. Antón M, Valenzuela A, Mateos D, Alados I, Foyo-Moreno I, Olmo FJ, Alados-Arboledas L (2014) Longwave aerosol radiative effects during an extreme desert dust event in southeastern Spain. Atmos Res 149:18–23. doi: 10.1016/j.atmosres.2014.05.022 CrossRefGoogle Scholar
  2. Basart S, Pérez C, Nickovic S, Cuevas E, Baldasano JM (2012) Development and evaluation of the BSC-DREAM8b dust regional model over northern Africa, the Mediterranean and the middle east. Tellus B 64:18539. doi: 10.3402/tellusb.v64i0.18539 CrossRefGoogle Scholar
  3. Cachorro VE, Toledano C, Prats N, Sorribas M, Mogo S, Berjón A, Torres B, Rodrigo R, de la Rosa J, de Frutos AM (2008) The strongest desert dust intrusion mixed with smoke over the Iberian Peninsula registered with Sun photometry. J Geophys Res 113:D14S04. doi: 10.1029/2007JD009582 CrossRefGoogle Scholar
  4. Gómez-Amo JL, Pinti V, Di Iorio T, Di Sarra A, Meloni D, Becagli S, Bellantone V, Cacciani M, Fuà D, Perrone MR (2011) The June 2007 Saharan dust event in the central Mediterranean: observations and radiative effects in marine, urban, and sub-urban environments. Atmos Environ 45:5385–5393. doi: 10.1016/j.atmosenv.2011.06.045 CrossRefGoogle Scholar
  5. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnof A (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16. doi: 10.1016/S0034-4257(98)00031-5 CrossRefGoogle Scholar
  6. King MD, Kaufman YJ, Menzel WP, Tanré D (1992) Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans Geosci Remote Sens 30:1–27. doi: 10.1109/36.124212 Google Scholar
  7. Lelieveld J, Berresheim H, Bormann S, Crutzen PJ, Dentener FJ, et al. (2002) Global air pollution crossroads over the Mediterranean. Science 298:794–799. doi: 10.1126/science.1075457 CrossRefGoogle Scholar
  8. Léon JF, Derimian Y, Chiapello I, Tanré D, Podvin T, Chatenet B, Diallo A, Deroo C (2009) Aerosol vertical distribution and optical properties over M’bour (16.96°W; 14.39°N), Senegal from 2006 to 2008. Atmos Chem Phys 9:9249–9261. doi: 10.5194/acp-9-9249-2009 CrossRefGoogle Scholar
  9. Miller RL, Tegen I (1998) Climate response to soil dust aerosols. J Clim 11(12):3247–3267CrossRefGoogle Scholar
  10. Obregón MA, Pereira S, Salgueiro V, Costa MJ, Silva AM, Serrano A, Bortoli D (2015) Aerosol radiative effects during two desert dust events in August 2012 over the southwestern Iberian peninsula. Atmos Res 153:404–415. doi: 10.1016/j.atmosres.2014.10.007 CrossRefGoogle Scholar
  11. Perrone MR, Bergamo A (2011) Direct radiative forcing during Sahara dust intrusions at a site in the central Mediterranean: anthropogenic particle contribution. Atmos Res 101:783–798. doi: 10.1016/j.atmosres.2011.05.011 CrossRefGoogle Scholar
  12. Perrone MR, Tafuro AM, Kinne S (2012) Dust layer effects on the atmospheric radiative budget and heating rate profiles. Atmos Environ 59:344–354. doi: 10.1016/j.atmosenv.2012.06.012 CrossRefGoogle Scholar
  13. Perrone MR, Becagli S, Orza JAG, Vecchi R, Dinoi A, Udisti R, Cabello M (2013) The impact of long-range-transport on PM1 and PM2.5 at a central Mediterranean site. Atmos Environ 71:176–186. doi: 10.1016/j.atmosenv.2013.02.006 CrossRefGoogle Scholar
  14. Perrone MR, Romano S (2014) Dust effects on ground-based irradiance measurements. ProScience 1:79–84. doi: 10.14644/dust.2014.013 Google Scholar
  15. Perrone MR, Romano S, Orza JAG (2014) Particle optical properties at a central Mediterranean site: impact of advection routes and local meteorology. Atmos Res 145-146:152–167. doi: 10.1016/j.atmosres.2014.03.029 CrossRefGoogle Scholar
  16. Santos D, Costa MJ, Silva AM, Salgado R (2013) Modeling Saharan desert dust radiative effects on clouds. Atmos Res 127:178–194. doi: 10.1016/j.atmosres.2012.09.024 CrossRefGoogle Scholar
  17. Schuster GL, Dubovik O, Holben BN (2006) Ångström exponent and bimodal aerosol size distributions. J Geophys Res 111:D07207. doi: 10.1029/2005JD006328 Google Scholar
  18. Valenzuela A, Olmo FJ, Lyamani H, Antón M, Quirantes A, Alados-Arboledas L (2012) Aerosol radiative forcing during African desert dust events (2005–2010) over southeastern Spain. Atmos Chem Phys 12:10331–10351. doi: 10.5194/acp-12-10331-2012 CrossRefGoogle Scholar
  19. Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann Assoc Am Geogr 93:297–313. doi: 10.1111/1467-8306.9302003 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2016

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità del SalentoLecceItaly

Personalised recommendations