Skip to main content

Advertisement

Log in

Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): causes, effects, and aerosol categorization

  • Original Article
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Air pollution over six countries in the Arabian Peninsula (AP), including the Kingdom of Saudi Arabia (KSA), the United Arab Emirates (UAE), Kuwait, Qatar, Bahrain, and Oman, is shown to include particulates, greenhouse gases, nitrogen dioxide, and sulfur dioxide. Distribution of the pollutants is strongly affected by major sandstorms that frequent the AP. Concentration of these pollutants is analyzed. Unprecedented infrastructure activities, overusing governmental subsidized energy, water desalination, heavy traffic in large cities, and cement plants are found to be the main reasons for the pollutants. In 2010, Qatar recorded the highest carbon dioxide (CO2) emission per capita with 40.31 metric tons. The KSA had the lowest CO2 per capita but recorded the highest emission resulting from the cement industry. Bahrain recorded the lowest cement industry emissions. Aerosol Robotic Network (AERONET) data retrieval over three sites in the AP depicted significant anthropogenic particles mixed with the desert dust over the AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul-Wahab SA (2003) SO2 dispersion and monthly evaluation of the industrial source complex short-term (ISCST32) model at Mina Al-Fahal Refinery, Sultanate of Oman. Environ Manag 31(2):0276–0291

    Article  Google Scholar 

  • Abdul-Wahab SA (2005) Monitoring of air pollution in the atmosphere around Oman Liquid Natural Gas (OLNG) plant. J Environ Sci Health A Tox Hazard Subst Environ Eng 40(3):559–570

    Article  Google Scholar 

  • Abdul-Wahab SA, Charles SB, Siddiqui RA (2005a) Study the relationship between the health effects and characterization of thermal inversions in the Sultanate of Oman. Atmos Environ 30(39):5466–5471

    Article  Google Scholar 

  • Abdul-Wahab SA, Worthing MA, Al-Maamari S (2005b) Mineralogy of atmospheric suspended dust in three indoor and one outdoor location in Oman. Environ Monit Assess 107:313–327

    Article  Google Scholar 

  • Abdul-Wahab SA, El Kamel A, Al Balushi AS, Al Damkhi AM, Siddiqui RA (2008) Modeling of nitrogen oxides (NOx) concentrations resulting from ships at berth. J Environ Sci Health A 43:1706–1716

    Article  Google Scholar 

  • Al Ali AR, Zualkernan I, Aloul F (2010) A mobile GPRS-sensors array for air pollution monitoring. IEEE Sensors J 8(10):1666–1671

    Article  Google Scholar 

  • Al Harbi BH (2009) Airborne dust in Saudi Arabia: source areas, entrainment, simulation and composition. Monash University, Australia, Ph.D. dissertation

    Google Scholar 

  • Al Katheeri E, Al Jallad F, Al Omar M (2012) Assessment of gaseous and particulate pollutants in the ambient air in Al Mirfa City, United Arab Emirates. J Environ Prot 3(7):640–647

    Article  Google Scholar 

  • Al Sabbagh M, Siu YL, Barrett J, Gelil IA (2013) CO2 emissions and fuel consumption of passenger vehicles in Bahrain: current status and future scenarios. Sustainability Research Institute (SRI), School of Earth and Environment, The University of Leeds, Leeds

    Google Scholar 

  • Alamodi AO, Mashat AS, Abdel Basset HM (2008) On the relation between atmospheric pressure systems and rainfall prediction over the Kingdom of Saudi Arabia. King Abdulaziz University, Kingdom of Saudi Arabia, Project number: 302/427 supported by King Abdulaziz University

    Google Scholar 

  • Alolayan MA, Brown KW, Evans JS, Bouhamra WS, Koutrakis P (2013) Source apportionment of fine particles in Kuwait City. Sci Total Environ 448:14–25

    Article  Google Scholar 

  • Arimoto R, Duce RA, Ray BR (1989) Concentrations, sources and air-sea exchange of trace elements in the atmosphere over the Pacific Ocean. In: Riley JP, Chester R, Duce RA (eds) Chemical oceanography, 10. Academic, 149, p 107

    Google Scholar 

  • Baawain MS, Al-Serihi AS (2014) Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network. Aerosol Air Qual Res 14(1):124–134

    Google Scholar 

  • Beirle S and Wagner T (2012) Trace gases (NO2). Satellite Group, Max-Planck-Institute for Chemistry in Mainz, Germany. Available online: http://joseba.mpch-mainz.mpg.de/no2_nad.htm. Accessed 27 Dec 2012

  • Böer B (1997) An introduction to the climate of the United Arab Emirates (review). J Arid Environ 35:3–16

    Article  Google Scholar 

  • Böer B (1998) Anthropogenic factors and their potential impacts on the sustainable development of Abu Dhabi’s terrestrial biological resources. Int J Sustainable Dev World Ecol 5(2):125–135

    Article  Google Scholar 

  • Brown KW, Bouhamra W, Lamoureux DP, Evans JS, Koutrakis P (2008) Characterization of particulate matter for three sites in Kuwait. J Air Waste Manage Assoc 58(8):994–1003

    Article  Google Scholar 

  • Charabi Y, Al-Bulooshi A, Al-Yahyai S (2013) Assessment of the impact of the meteorological meso-scale circulation on air quality in arid subtropical region. Environ Monit Assess 185(3):2329–2342

    Article  Google Scholar 

  • Doms G, and Schaettler U (2002) Consortium for small-scale modeling (COSMO). Newsletter Consortium for small-scale modeling, 2, G. Doms and U. Schaettler, Eds., 220 pp. [Available from Deutscher Wetterdienst, P.O. Box 100465, 63004 Offenbach, Germany].

  • Doronzo D, de Tullio M, Pascazio G, Dellino P, Liu G (2015) On the interaction between shear dusty currents and buildings in vertical collapse: theoretical aspects, experimental observations, and 3D numerical simulation. J Volcanol Geotherm Res 302:190–198

    Article  Google Scholar 

  • Draxler RR, Hess GD (1998) An overview of the HYSPLIT 4 modeling system for trajectories, dispersion and deposition. Aust Meteorol Mag 47(4):295–308

    Google Scholar 

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res 105:206730–220696

    Google Scholar 

  • Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Dubovik O, Sinyuk A, Lapyonok T, Holben B, Mischenko M, Yang P, Eck T, Volten H, Muñoz O, Veihelmann B, van der Zande WJ, Leon J., Sorokin M, and Slutsker I. (2006) The application of spheroid models to account for aerosol particle non-sphericity in remote sensing of desert dust. J. Geophys. Res. 111. doi: 10.1029/2005JD006619

  • Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104:31333–31349

    Article  Google Scholar 

  • Eck TF et al (2009) Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. J Geophys Res 114:D11201. doi:10.1029/2008JD010870

    Article  Google Scholar 

  • Edgell HS (2006) Arabian deserts: nature, origin, and evaluation. Springer, Netherlands, pp 239–261

  • El Assouli SM, Al Qahtani MH, Milaat WM (2007) Genotoxicity of air borne particulates assessed by comet and the salmonella mutagenicity test in Jeddah, Saudi Arabia. Int J Environ Res Public Health 4:216–223

    Article  Google Scholar 

  • El Shobokshy M, Al Saedi Y (1993) The impact of the Gulf War on the Arabian environment. 1. Particulate pollution and reduction of solar irradiance. Atmos Environ Part A-Gen Top 27(1):95–108

    Article  Google Scholar 

  • Elagib NA, Addin Abdu AS (1997) Climate variability and aridity in Bahrain. J Arid Environ 36:405–419

    Article  Google Scholar 

  • Engelbrecht JP, McDonald EV, Gillies JA, Jayanty RK, Casuccio M, Gertler AW (2009) Characterizing mineral dusts and other aerosols from the Middle East. Part 1: ambient aerosols. Inhal Toxicol 21(4):297–326

    Article  Google Scholar 

  • Environmental Protection Report (EPA) for sulfur dioxide, United States (2015) http://www3.epa.gov/airquality/sulfurdioxide/.

  • Farahat A, El-Askary H, and Al-Shaibani A (2015) Study of aerosols’ characteristics and dynamics over the Kingdom of Saudi Arabia using a multi sensor approach combined with ground observations. Advances In Meteorology, Article ID 247531, in press.

  • Fatahalla A, Ahmed M (1990) SO2 and NO x emissions due to fossil fuel combustion in Saudi Arabia: a preliminary inventory. Atmos Environ Part A Gen Top 24(12):2917–2926

    Article  Google Scholar 

  • General Directorate of Traffic (2011) Traffic accidents facts in Kingdom of Bahrain

    Google Scholar 

  • Gibson JM, Farah ZS (2012) Environmental risks to public health in the United Arab Emirates: a quantitative assessment and strategic plan. Environ Health Perspect 120(5):681–686

    Article  Google Scholar 

  • Givehchi R, Arhami M, Tajrishy M (2013) Contribution of the Middle Eastern dust source areas to PM10 levels in urban receptors: case study of Tehran, Iran. Atmos Environ 75:287–295

    Article  Google Scholar 

  • Guoshun Z, Xinyi S, Rong Z, Xu H, Ying W, Qingwel S, Yan L, Xing W (2011) The true cost of coal, coal dust storms: toxic winds. Green Peace Report, China

    Google Scholar 

  • Habeebullah TM (2014) Modeling particulate matter (PM10) in Makkah, Saudi Arabia—a viewpoint of health impact. J Clean Energy Technol 2(3):196–200

    Article  Google Scholar 

  • Harder E, Gibson JM (2011) The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates. Renew Energy 36(2):789–796

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET: a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Irwin JG, Williams ML (1988) Acid rain: chemistry and transport. Environ Pollut 50:29–59

    Article  Google Scholar 

  • Khamdan SA, Al Madany I, Muhussain E (2009) Temporal and spatial variations of the quality of ambient air in the Kingdom of Bahrain during 2007. Environ Monit Assess 154(1–4):241–252

    Article  Google Scholar 

  • Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M, Chen LC, Maciejcczyk PM (2012) Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos Pollut Res 3:331–340

    Article  Google Scholar 

  • Kwarteng A, Dorvlo AS, Kumar GT (2009) Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. Int J Climatol 29:605–617

    Article  Google Scholar 

  • Laurent B, Marticorena B, Bergametti G, Le’on J, Mahowald N (2008) Modeling mineral dust emissions from the Sahara Desert using new surface properties and soil database. J Geophys Res 113:D14218

    Article  Google Scholar 

  • Li Y, Gibson JM, Jat P, Puggioni G, Hasan M, West JJ, Serre M (2010) Burden of disease attributed to anthropogenic air pollution in the United Arab Emirates: estimates based on observed air quality data. Sci Total Environ 408(23):5784–5793

    Article  Google Scholar 

  • Madany I, Danish S (1988) Measurement of air pollution in Bahrain. Environ Int 14(1):49–58

    Article  Google Scholar 

  • Madany I, Danish S (1993) Spatial and temporal patterns in nitrogen-dioxide concentrations in a hot desert region. Atmos Environ Part A-Gen Top 27(15):2385–2391

    Article  Google Scholar 

  • Maghrabi A, Al Harbi B, Tapper N (2011) Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos Environ 13:2164–2173

    Article  Google Scholar 

  • Marcella P, Elfatih A (2008) The hydro climatology of Kuwait: explaining the variability of rainfall at seasonal and interannual time scales. J Hydrometeorol 9(5):1095–1105

    Article  Google Scholar 

  • Meo SA, Al-Kheraiji MF, Alfaraj ZF, Alwehaibi NA, Aldereihim AA (2013) Respiratory and general health complaints in subjects exposed to sandstorm at Riyadh, Saudi Arabia. Pak J Med Sci 29(2):642–646

    Article  Google Scholar 

  • Munir S, Habeebullah T, Seroji A, Morsy E, Mohammed A, Abu Saud W, Awad A (2013) Modeling particulate matter concentrations in Makkah, applying a statistical modeling approach. Aerosol Air Qual Res 13(3):901–910

    Google Scholar 

  • Nasrallah HA, Nieplova E, Ramadan E (2004) Warm season extreme temperature events in Kuwait. J Arid Environ 56:357–371

    Article  Google Scholar 

  • Nazzal N (2009) Heavy snowfall on Ras Al Khaimah’s Jebel Jais mountain cluster. Gulf News. http://www.gulfnews.com/nation/General/10278477.html. Retrieved on 31 Jan 2009.

  • Ning AI, Polenske KR (2008) Socioeconomic impact analysis of yellow-dust storms: an approach and case study for Beijing. Econ Syst Res 20(2):187–203

    Article  Google Scholar 

  • Notaro M, Alkolibi F, Fadda E, Bakhrjy F (2013) Trajectory analysis of Saudi Arabian dust storms. J Geophys Res Atmos 118:6028–6043

    Article  Google Scholar 

  • Othman N, Mat-Jafri MZ, San LH (2010) Estimating particulate matter concentration over arid region using Satellite Remote Sensing: a case study in Makkah, Saudi Arabia. Mod Appl Sci 4:11–20

    Article  Google Scholar 

  • Pease PP, Tchakerian VP, Tindale NW (1998) Aerosols over the Arabian Sea: geochemistry and source areas for aeolian desert dust. J Arid Environ 39:477–496

    Article  Google Scholar 

  • PMEW (2012) General Commission for the Protection of Marine Resources, Environment & Wildlife, Bahrain’s Second National Communication

    Google Scholar 

  • Prakash J, Stenchikov P, Kalenderski G, Osipov S, Bangalath H (2015) The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos Chem Phys 15:199–222

    Article  Google Scholar 

  • Prospero J, Nees R, Uematsu M (1987) Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J Geophys Res 92:14723–14731

    Article  Google Scholar 

  • Pye K (1987) Aeolian dust and dust deposits. Academic, London, p 334

    Google Scholar 

  • Qatar Statistics Authority (2013) www.qsa.gov.qa, Qatar Environment Day Report.

  • Saab B (1993) Albuterol nebulizer use in Bahrain and the burning oil-wells of Kuwait. J Environ Health 55(7):18–20

    Google Scholar 

  • Sabbak OA (1993) Distribution of sulfur dioxide in the atmosphere of Jiddah, Saudi Arabia. Air Waste 43(2):208–212

    Article  Google Scholar 

  • Sadiq M, McCain JC (1993) The Gulf War aftermath: an environmental tragedy. Kluwer, Boston

    Book  Google Scholar 

  • Saeed TM, Al‐Dashti H (2011) Optical and physical characterization of “Iraqi freedom” dust storm, a case study. Theor Appl Climatol 104:123–137

    Article  Google Scholar 

  • Shalaby A, Rappenglueck B, Eltahir E (2015) The climatology of dust aerosol over the Arabian Peninsula. Atmos Chem Phys Discuss 15:1523–1571

    Article  Google Scholar 

  • Shaltout AA, Boman J, Al-Malawi DR, Shehadeh ZF (2013) Elemental composition of PM2.5 particles sampled in industrial and residential areas of Taif, Saudi Arabia. Aerosol Air Qual Res 13:1356–1364

    Google Scholar 

  • Shmida A (1985) Biogeography of the desert flora. In: Evenari M, Noy Meir I, Goodall D (eds) Ecosystems of the world: hot deserts and arid shrublands. Elsevier, Amsterdam, 12A:23–77

    Google Scholar 

  • Smirnov A, Holben BN, Dubovik O, Neil N, Eck TF (2002) Atmospheric aerosol optical properties in the Persian Gulf. Atmos Sci 59:620–634

    Article  Google Scholar 

  • Sokolik IN, Toon OB (1999) Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J Geophys Res 104(D8):9423–9444

    Article  Google Scholar 

  • Su L, Toon OB (2011) Saharan and Asian dust: similarities and differences determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical model. Atmos Chem Phys 11:3263–3280

    Article  Google Scholar 

  • Taylor M, Kazadzis S, Tsekeri A, Gkikas A, Amiridis V (2014) Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak. Atmos Meas Tech 7:3151–3175

    Article  Google Scholar 

  • Thalib L, Al-Taiar A (2012) Dust storms and the risk of asthma admissions to hospitals in Kuwait. Sci Total Environ 433:347–351

    Article  Google Scholar 

  • UAE Science Plan (2004) Unified aerosol experiment (UAE), prepared for DWRS, NASA, NRL, and ONR, version 1.0, September 15, 2004. Compiled and edited by Jeffrey S. Reid, Brent N. Holben, Charles Gatebe, Stuart Piketh, and Douglas L. Westphal.

  • Uno I, Harada K, Satake S, Hara Y, Wang Z (2005) Meteorological characteristics and dust distribution of the Tarim Basin simulated by the nesting RAMS/CFORS dust model. J Meteorol Soc Jpn 83A:219–239

    Article  Google Scholar 

  • Weng Q, Yang S (2006) Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS. J Environ Monit Assessment 117:463–489

    Article  Google Scholar 

  • White R, Stineman C, Symons J, Breysse P, Kim S, Bell M, Samet J (2008) Premature mortality in the Kingdom of Saudi Arabia associated with particulate matter air pollution from the 1991 Gulf War. Hum Ecol Risk Assess 14(4):645–664

    Article  Google Scholar 

  • Willis HH, MacDonald Gibson J, Shih RA, Geschwind S, Olmstead S, Hu J, Moore M (2010) Prioritizing environmental health risks in the UAE. Risk Anal 30(12):1842–1856

    Article  Google Scholar 

  • Yeatts KB, El-Sadig M, Leith D, Kalsbeek W, Al-Maskari F, Couper D, Olshan AF (2012) Indoor air pollutants and health in the United Arab Emirates. Environ Health Perspect 120(5):687–694

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support provided by KACST for funding this work under grant no. MT-32-76. The support provided by the Deanship of Research at King Fahd University of Petroleum and Minerals (KFUPM) is gratefully acknowledged. Analyses and visualizations used in this study were produced with the Giovanni online data system and developed and maintained by the NASA GES DISC. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of the data used in this research effort. Furthermore, the authors would like also to acknowledge the help of Dr. A. Umran Dogan, University of Iowa, and Dr. Hesham El-Askary, Chapman University, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Farahat.

Additional information

This article is part of the Topical Collection on DUST

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahat, A. Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): causes, effects, and aerosol categorization. Arab J Geosci 9, 196 (2016). https://doi.org/10.1007/s12517-015-2203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2203-y

Keywords

Navigation