Petrographical and petrophysical investigations of upper cretaceous sandstones of the South West Sennan field, Western Desert, Egypt

  • Hesham Abuseda
  • Andreas WellerEmail author
  • Carl-Diedrich Sattler
  • Wolfgang Debschütz
Original Paper


The sandstones of the Bahariya Formation represent an important Cretaceous oil and gas reservoir in Egypt. The sandstone samples of this study originate from Abu Sennan concession in the South West Sennan (SWS) oil field that is located in the Western Desert of Egypt. The mineralogical composition for studied sandstone samples is mainly composed of detrital quartz and quartz overgrowth (69 to 82 %), kaolinite (6 to 20 %), plagioclase and microcline (2 to 9 %), and Fe-rich chlorite and framboidal pyrite (2 %). Muscovite, biotite, zircon, rutile, and apatite, as well as diagenetic calcite, are present as accessory minerals. The petrophysical properties indicate a moderate degree of diagenesis and cementation for the investigated sandstones that results in favorable reservoir conditions. We provide a detailed description of the petrophysical investigations and the resulting relationships. The magnetic susceptibility has proved to be a key parameter in evaluating porosity and permeability of the investigated sandstone samples of the SWS oil field. Obviously, Fe-rich chlorite cement that has been precipitated in the pore space control porosity, specific internal surface, and permeability. Beside the formation factor, the specific internal surface, and the imaginary part of conductivity, longitudinal and transversal relaxation times determined by nuclear magnetic resonance enable a reliable permeability prediction.


Bahariya Formation Sandstone Permeability Porosity Magnetic susceptibility 


  1. Adler PM, Jaacquin CG, Quibier JA (1990) Flow in simulated porous media. Inter J Multiphase flow 16:691–712CrossRefGoogle Scholar
  2. Athmer W (2006) Petrologische und petrophysikalische Charakterisierung der stark anisotropen Bahariya Formation (Ägypten). - In: Müller R (ed.): Geoforschung 2006 - Beiträge aus Geologie, Paläontologie und Geophysik. - Clausthaler Geowissenschaften 5:19–33Google Scholar
  3. Börner FD, Schopper JR, Weller A (1996) Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophysl Prospect 44:583–601CrossRefGoogle Scholar
  4. Borradaile GJ, Werner T (1994) Magnetic anisotropy of some phyllosilicates. Tectonophysics 235:223–248CrossRefGoogle Scholar
  5. Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166Google Scholar
  6. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630CrossRefGoogle Scholar
  7. Catuneanu O, Khalifa MA, Wanas HA (2006) Sequence stratigraphy of the lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt. Sed Geol 190:121–137CrossRefGoogle Scholar
  8. Coates GR, Xiao L, Prammer MG (1999) NMR logging principles and applications. Halliburton Energy Services, HoustonGoogle Scholar
  9. Dominik W (1985) Stratigraphie und Sedimentologie der Oberkreide von Bahariya und ihre Korrelation zum Dakhla Becken (Western Desert Agypten). Berlin Geowiss Abh 50:153–176Google Scholar
  10. Dunn K-J, Bergman DJ, LaTorraca GA (2002) Nuclear magnetic resonance. Petrophysical and logging applications. Handbook of Geophysical Exploration. Seismic Exploration, vol. 32, PergamonGoogle Scholar
  11. EGPC, 1992. Egyption General Petrolum Corporation Western Desert, oil and gas fields (A Comprehensive Overview). EGPC, Cairo, Egypt, 431 pGoogle Scholar
  12. El Gezeery NH, Mohsen SM, Farid MI (1972) Sedimentary basins of Egypt and their petroleum prospects. 8th Arab Pet. Cong., Algiers, Paper No. 83 (B-3), 13 pGoogle Scholar
  13. Franks GD (1982) Stratigraphical modeling of Upper Cretaceous sediments of Bahariya Oasis. 6th EGPC Exp. Seminar, Cairo, 21 pGoogle Scholar
  14. Halisch M, Weller A, Sattler C-D, Debschütz W, El-Sayed AMA (2009) A complex core-log case study of an anisotropic sandstone, originating from Bahariya Formation, Abu Gharadig Basin, Egypt. Petrophysics 50:478–497Google Scholar
  15. Herron MM (1987) Estimating of intrinsic permeability of elastic sediments from geochemical data. Trans., SPWLA. P. 6Google Scholar
  16. Kassab MA, Weller A (2011) Porosity estimation from compressional wave velocity: a study based on Egyptian sandstone formations. J Pet Sci Eng 78:310–315CrossRefGoogle Scholar
  17. Keating K, Knight R (2007) A laboratory study to determine the effect of iron oxides on proton NMR measurements. Geophysics 72(1):E27–E32CrossRefGoogle Scholar
  18. Kenyon WE (1997) Petrophysical principles of applications of NMR logging. Log Anal 38(2):21–43Google Scholar
  19. Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. API Drilling Prod Pract 1941:200Google Scholar
  20. Lesmes DP, Morgan FD (2001) Dielectric spectroscopy of sedimentary rocks. J Geophys Res 106:13329–13346CrossRefGoogle Scholar
  21. Marshall DJ, Madden TR (1959) Induced polarization, a study of its causes. Geophysics 24:790–816CrossRefGoogle Scholar
  22. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691CrossRefGoogle Scholar
  23. Nordsiek S, Weller A (2008) A new approach to fitting induced-polarization spectra. Geophysics 73(6):F235–F245CrossRefGoogle Scholar
  24. Pape H, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore-space geometry. Geophysics 64:1447–1460CrossRefGoogle Scholar
  25. Revil A, Cathles LM (1999) Permeability of shaly sands. Water Resour Res 35(3):651–662CrossRefGoogle Scholar
  26. Revil A, Florsch N (2010) Determination of permeability from spectral induced polarization in granular media. Geophys J Int 181(3):1480–1498Google Scholar
  27. Revil A, Skold M (2011) Salinity dependence of spectral induce polarization in sands and sandstones. Geophys J Int 187:813–824CrossRefGoogle Scholar
  28. Rink M, Schopper JR (1974) Interface conductivity and its implication to electric logging. Presented at Transactions of the SPWLA 15th Annual Logging Symposium, Paper JGoogle Scholar
  29. Scheidegger AE (1974) The physics of flow through porous media. University of Toronto, Toronto Press., 353pGoogle Scholar
  30. Schleifer N, Weller A, Schneider S, Junge A (2002) Investigation of a Bronze Age plankway by spectral induced polarisation. Archaeol Prospect 9:243–253CrossRefGoogle Scholar
  31. Schön JH (1996) Physical properties of rocks: fundamentals and principles of petrophysics. Handbook of Geophysical Exploration, Seismic Exploration, vol. 18, ElsevierGoogle Scholar
  32. Serra O (2008) Well logging handbook. Editions TECHNIP, ParisGoogle Scholar
  33. Soliman SM, Faris M, El-Badry O (1970) Lithostratigraphy of the Cretaceous formations of the Bahariya Oasis, Western Desert, Egypt. 7th Arab Pet. Cong., Kuwait, paper No. 59, (B-3), 30 p.Google Scholar
  34. Tiab D, Donaldson EC (2004) Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties. ElsevierGoogle Scholar
  35. Timur A (1968) An investigation of permeability, porosity, and residual water saturation relationships. SPWLA, 9th Ann. Logging Symp., pp.1-18Google Scholar
  36. Titov K, Tarasov A, Ilyn Y, Seleznev N, Boyd A (2002) Relationships between induced polarization relaxation time and hydraulic properties of sandstone. Geophys J Int 180:1095–1106CrossRefGoogle Scholar
  37. Vinegar HJ, Waxman MH (1984) Induced polarization of shaly sands. Geophysics 49:1267–1287CrossRefGoogle Scholar
  38. Waxman MH, Smits LJM (1968) Electrical conductivities in oil bearing shaly sands. SPE J 243:107–122CrossRefGoogle Scholar
  39. WEC 1995. Well evaluation conference. Schlumberger-Egypt, p. 57–71Google Scholar
  40. Weller A, Slater L (2012) Salinity dependence of complex conductivity of unconsolidated and consolidated materials comparisons with electrical double layer models. Geophysics 77(5):D185–D198CrossRefGoogle Scholar
  41. Weller A, Nordsiek S, Debschütz W (2010a) Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization. Geophysics 75(6):E215–E226CrossRefGoogle Scholar
  42. Weller A, Slater L, Nordsiek S, Ntarlagiannis D (2010b) On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple data sets. Geophysics 75(4):WA105–WA112CrossRefGoogle Scholar
  43. Weller A, Breede K, Slater L, Nordsiek S (2011) Effect of changing water salinity on complex conductivity spectra of sandstones. Geophysics 76(5):F315–F327CrossRefGoogle Scholar
  44. Weller A, Slater L, Nordsiek S (2013) On the relationship between induced polarization and surface conductivity: Implications for petrophysical interpretation of electrical measurements. Geophysics 78(5):D315–D325CrossRefGoogle Scholar
  45. Weller A, Slater L, Binley A, Nordsiek S, Xu S (2015a) Permeability prediction based on induced polarization: insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range. Geophysics 80(2):D161–D173CrossRefGoogle Scholar
  46. Weller A, Slater L, Huisman JA, Esser O, Haegel F-H (2015b) On the specific polarizability of sands and sand-clay mixtures. Geophysics 80(3):A57–A61CrossRefGoogle Scholar
  47. Welton JE (1984) SEM petrology atlas. AAPG methods in exploration series. 237pGoogle Scholar
  48. Wyllie MRJ, Gregory AR, Gradnet GHF (1956) Elastic wave velocities in heterogeneous and porous media. Geophysics 21:41–70CrossRefGoogle Scholar
  49. Zimmermann E, Kemna A, Berwix J, Glaas W, Vereecken H (2008) EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments. Meas Sci Technol 19(9):094010CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2016

Authors and Affiliations

  • Hesham Abuseda
    • 1
  • Andreas Weller
    • 2
    Email author
  • Carl-Diedrich Sattler
    • 3
  • Wolfgang Debschütz
    • 2
  1. 1.Egyptian Petroleum Research Institute (EPRI)El Zohour RegionCairoEgypt
  2. 2.Institut für GeophysikTechnische Universität ClausthalClausthal-ZellerfeldGermany
  3. 3.Institut für Geologie and PaläontologieTechnische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations