Skip to main content

Advertisement

Log in

Saharan dust effects in different trophic areas off Northwest Africa

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The impacts of atmospheric and deposited mineral particles of Saharan dust storms on the light field above and below the water surface were quantified using satellite measurements and model simulations. The investigations were concentrated on the photosynthetic active part of the incident solar radiation as well as the light attenuation and the euphotic depth in waters of the tropical Eastern North Atlantic. In the time period of 2003 to 2012, the Saharan dust storms were characterized by the dust aerosol optical depth derived from satellite data. Statistics of the reduction of photosynthetically active radiation by atmospheric dust were derived in areas of eutrophic, mesotrophic, and oligotrophic waters. The highest reductions of up to 45 % in the photosynthetically active radiation were observed in July and the lowest ones in the winter months between November and January. The reductions became less from on- to offshore areas due to the removal of atmospheric dust. In the 10-year data set, no systematic changes or increasing or decreasing trends could be verified in dust storms and reductions of photosynthetically active radiation. Model simulations in the water column showed that the deposited dust increased the light attenuation up to 28 % and decreased the euphotic depth up to 22 % particularly in the blue spectral range. The strongest impacts on optical water properties were found in low chlorophyll-a oligotrophic areas during strong and long-lasting Saharan dust storms with high deposition rates of small dust particles as well as long residence times and low mixed layer depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alados I, Olmo FJ, Foyo-Moreno I, Alados-Arboledas L (2000) Estimation of photosynthetically active radiation under cloudy conditions. Agric For Met 102:39–50

    Article  Google Scholar 

  • Allen PA (2009) Earth surface processes. John Wiley & Sons

  • Babin M, Morel A, Claustre H, Bricaud A, Kolber Z, Falkowski PG (1996) Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Res I 43:1241–1272

    Article  Google Scholar 

  • Babin M, Stramski D, Ferrari GM, Claustre H, Bricaud A, Obolensky G, Hoepffner N (2003) Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res 108(C7):3211

    Article  Google Scholar 

  • Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53

    Article  Google Scholar 

  • Carlson TN (1979) Atmospheric turbidity in Saharan dust outbreaks as determined by analysis of satellite brightness data. Mon Weather Rev 107:322–335

    Article  Google Scholar 

  • Chameides WL, Yu H, Liu SC, Bergin M, Zhou X, Mearns L, Wang G, Kiang CS, Saylor RD, Luo C, Huang Y, Steiner A, Giorgi F (1999) Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls. Proc Natl Acad Sci U S A 96(24):13,626–13,633

    Article  Google Scholar 

  • Chiapello I, Moulin C (2002) TOMS and METEOSAT satellite records of the variability of Saharan dust transport over the Atlantic during the last two decades (1979–1997). Geophys Res Lett 29(8):1176

    Article  Google Scholar 

  • Chiapello I, Bergametti G, Chatenet B, Bousquet P, Dulac F, Soares ES (1997) Origins of African dust transported over the northeastern tropical Atlantic. J Geophys Res 102:13701–13709

    Article  Google Scholar 

  • Choobari OA, Zawar-Reza P, Sturman A (2014) The global distribution of mineral dust and its impacts on the climate system: a review. Atmos Res 138:152–165

    Article  Google Scholar 

  • Claustre H, Morel A, Hooker SB, Babin M, Antoine D, Oubelkheir K, Bricaud A, Leblanc K, Quéguiner B, Maritorena S (2002) Is desert dust making oligotrophic waters greener? Geophys Res Lett 29(10):107-1–107-4

    Article  Google Scholar 

  • Davies JA (1995) Comparison of modeled and observed global irradiance. J Appl Meteorol 35:192–201

    Article  Google Scholar 

  • di Sarra A, Cacciani M, Chamard P, Cornwall C, DeLuisi JJ, Di Iorio T, Disterhoft P, Fiocco G, Fuá D, Monteleone F (2002) Effects of desert dust and ozone on the ultraviolet irradiance at the Mediterranean island of Lampedusa during PAUR II. J Geophys Res 107(D18):PAU 2-1–PAU 2–14

    Google Scholar 

  • Doronzo DM, Dellino P (2012) Hydraulics of subaqueous ash flows as deduced from their deposits. J Volcanol Geotherm Res 239:12–18

    Article  Google Scholar 

  • Doronzo DM, Dellino P (2013) Hydraulics of subaqueous ash flows as deduced from their deposits: 2. Water entrainment, sedimentation, and deposition, with implications on pyroclastic density current deposit emplacement. J Volcanol Geotherm Res 258:176–186

    Article  Google Scholar 

  • Duggen S, Olgun N, Croot P, Hoffmann LJ, Dietze H, Delmelle P, Teschner C (2010) The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences 7(3):827–844

    Article  Google Scholar 

  • Emery KO, Honjo S (1979) Surface suspended matter off western Africa: relations of organic matter, skeletal debris and detrital minerals. Sedimentology 26:775–794

    Article  Google Scholar 

  • Emery KO, Milliman JD (1978) Suspended matter in surface waters: influence of river discharge and of upwelling. Sedimentology 25:125–140

    Article  Google Scholar 

  • Evan AT, Mukhopadhyay S (2010) African Dust over the Northern Tropical Atlantic: 1955–2008. J Appl Meteorol Climatol 49:2213–2229

    Article  Google Scholar 

  • Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235–236:96–115

    Article  Google Scholar 

  • Gao Y, Kaufman YJ, Tanre’ D, Kolber D, Falkowski PG (2001) Seasonal distributions of aeolian iron fluxes to the global ocean. Geophys Res Lett 28:29–32

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204

    Article  Google Scholar 

  • Guo Y, Tian B, Kahn RA, Kalashnikova O, Wong S, Waliser DE (2013) Tropical Atlantic dust and smoke aerosol variabilities related to the Madden-Julian Oscillation in MODIS and MISR observations. J Geophys Res 118(D50409):4947–4963

    Google Scholar 

  • Hakvoort JHM (1994) Absorption of light by surface water. PhD thesis, Delft University of Technology

  • Hamme RC, Webley PW, Crawford WR, Whitney FA, DeGrandpre MD, Emerson SR, Eriksen CC, Giesbrecht KE, Gower JFR, Kavanaugh MT, Peña MA, Sabine CL, Batten SD, Coogan LA, Grundle DS, Lockwood D (2010) Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys Res Lett 37(19):L19604

    Article  Google Scholar 

  • Hansen J, Sato M, Lacis A, Ruedy R, Tegen I, Matthews E (1998) Perspective: climate forcings in the industrial era. Proc Natl Acad Sci 22:12753–12758

    Article  Google Scholar 

  • Højerslev NK (1986) Optical properties of sea water (doktordisputats). In: Sündermann J (ed) Oceanography. Springer, Berlin, pp 383–462

    Google Scholar 

  • Huang J, Zhang C, Prospero JM (2010) African dust outbreaks: a satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J Geophys Res 115:D05202

    Google Scholar 

  • Jankowiak I, Tanré D (1992) Satellite climatology of Saharan dust outbreaks. J Clim 5:646–656

    Article  Google Scholar 

  • Jones TA, Christopher SA (2011) A reanalysis of MODIS fine mode fraction over ocean using OMI and daily GOCART simulations. Atmos Chem Phys 11:5805–5817

    Article  Google Scholar 

  • Kalu AE (1979) The African dust plume: its characteristics and propagation across West Africa in winter. SCOPE 14:95–118

    Google Scholar 

  • Karyampudi MV, Palm SP, Reagen JA, Fang H, Grant WB, Hoff RM, Moulin C, Pierce HF, Torres O, Browell EV, Melfi SH (1999) Validation of the Saharan dust plume conceptual model using Lidar, METEOSAT, and ECMWF data. Bull Am Meteorol Soc 80:1045–1076

    Article  Google Scholar 

  • Kasten F, Czeplak G (1980) Solar and terrestrial radiation dependent on the amount and type of cloud. Sol Energy 24:177–189

    Article  Google Scholar 

  • Kaufman YJ, Koren I, Remer LA, Tanré D, Ginoux P, Fan S (2005) Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res 110:D10S12

    Article  Google Scholar 

  • Kelly PM, Jones PD, Pengqun J (1996) The spatial response of the climate system to explosive volcanic eruptions. Int J Climatol 16:537–550

    Article  Google Scholar 

  • Langmann B, Zakšek K, Hort M, Duggen S (2010) Volcanic ash as fertiliser for the surface ocean. Atmos Chem Phys 10(8):3891–3899

    Article  Google Scholar 

  • Levin Z, Ganor E, Gladstein V (1996) The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J Appl Meteorol 35:1511–1523

    Article  Google Scholar 

  • Li X, Maring H, Savoie D, Voss K, Prospero JM (1996) Dominance of mineral dust in aerosol light scattering in the North Atlantic trade winds. Nature 380:416–419

    Article  Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 2:697–702

  • Mass CF, Portman DA (1989) Major volcanic eruptions and climate: a critical evaluation. J Clim 2(6):566–593

    Article  Google Scholar 

  • Morel A (1982) Optical properties and radiant energy in the waters of the guinea dome and the mauritanian upwelling area in relation to primary production. Rapp P-v Réun Const int Exp Mer 180:94–107

    Google Scholar 

  • Morel A, Antoine D, Babin M, Dandonneau Y (1996) Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill. Deep-Sea Res I 43:1273–1304

    Article  Google Scholar 

  • Ohde T, Siegel H (2012a) Impacts of Saharan dust and clouds on photosynthetically available radiation in the area off Northwest Africa. Tellus B 64:17160

    Article  Google Scholar 

  • Ohde T, Siegel H (2012b) Impacts of Saharan dust on downward irradiance and photosynthetically available radiation in the water column in the area off Northwest Africa. Adv Oceanogr Limnol 3(2):99–131

    Article  Google Scholar 

  • Ohde T, Siegel H (2013) Spectral effects of Saharan dust on photosynthetically available radiation in comparison to the influence of clouds. J Atmos Sol-Terr Phys 102:269–280

    Article  Google Scholar 

  • Ohde T, Siegel H (2014) Impacts of Saharan dust on photosynthetically available radiation and optical water properties. Proceedings of International Conference on Atmospheric Dust, 01–06 June 2014, Castellaneta Marina, Italy

  • Otto S, Bierwirth E, Weinzierl B, Kandler K, Esselborn M, Tesche M, Schladitz A, Wendisch M, Trautmann T (2009) Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles. Tellus B 61:270

    Article  Google Scholar 

  • Pérez-Marrero J, Llinas O, Maroto L, Rueda MJ, Cianca A (2002) Saharan dust storms over the Canary Islands during winter 1998 as depicted from the advanced very high-resolution radiometer. Deep-Sea Res II 49:3465–3479

    Article  Google Scholar 

  • Prospero JM (1996) Saharan dust transport over the North Atlantic Ocean and Mediterranean: an overview. In: Guerzoni S, Chester R (eds) The impact of desert dust across the Mediterranean. Kluwer Academic Publishing, Dordrecht, pp 133–151

    Chapter  Google Scholar 

  • Prospero JM, Carlson TN (1972) Vertical and areal distribution of Saharan dust over the Western Equatorial North Atlantic Ocean. J Geophys Res 77:5255–5265

    Article  Google Scholar 

  • Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302:1024–1027

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002

    Article  Google Scholar 

  • Ratmeyer V, Balzer W, Bergametti G, Chiapello I, Fischer G, Wyputta U (1999) Seasonal impact of mineral dust on deep-ocean particle flux in the eastern subtropical Atlantic Ocean. Mar Geol 159:241–252

    Article  Google Scholar 

  • Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation—a possible desertification feedback loop. Proc Natl Acad Sci 98:5975–5980

    Article  Google Scholar 

  • Sarthou G, Baker AR, Blain S, Achterberg EP, Boye M, Bowie AR, Croot P, Laan P, DeBaar HJW, Jickells TD, Worsfold PJ (2003) Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep-Sea Res I 50(10–11):1339–1352

    Article  Google Scholar 

  • Schepanski K, Tegen I, Macke A (2009) Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos Chem Phys 9:1173–1189

    Article  Google Scholar 

  • Stephen S, Rampino MR (1988) The relationship between volcanic eruptions and climate change: still a conundrum? EOS Trans Am Geophys Union 69:74–86

    Article  Google Scholar 

  • Stramska M, Stramski D, Cichocka M, Cieplak A, Wozniak SB (2008) Effects of atmospheric particles from Southern California on the optical properties of seawater. J Geophys Res 113:C08037

    Google Scholar 

  • Stramski D, Wozniak SB, Flatau PJ (2004) Optical properties of Asian mineral dust suspended in seawater. Limnol Oceanogr 49(3):9–55

    Google Scholar 

  • Stramski D, Babin M, Wozniak SB (2007) Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater. Limnol Oceanogr 52(6):2418–2433

    Article  Google Scholar 

  • Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65

    Article  Google Scholar 

  • Wolf ME, Hidy GM (1997) Aerosols and climate: anthropogenic emissions and trends for 50 years. J Geophys Res 102(D10):11,113–11,121

    Article  Google Scholar 

  • Wozniak SB, Stramski D (2004) Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms. Appl Opt 43(17):3489

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the German Federal Ministry of Education and Research (BMBF) for funding within the framework of the SOPRAN (FKZ 03F0662B). This research is based on MODIS aerosol data provided by NASA’s Giovanni, an online data visualization and analysis tool maintained by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC), a section of the NASA Earth-Sun System Division. TMI data were produced by the Remote Sensing System, Santa Rosa (http://www.remss.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ohde.

Additional information

This article is part of the Topical Collection on DUST

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohde, T. Saharan dust effects in different trophic areas off Northwest Africa. Arab J Geosci 9, 216 (2016). https://doi.org/10.1007/s12517-015-2031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2031-0

Keywords

Navigation