Skip to main content
Log in

Experimental study to evaluate the effect of travertine structure on the physical and mechanical properties of the material

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Geology, hydrophysical properties, and mechanical behavior of two main varieties of ornamental stones in Algeria have been studied in detail. Travertines and onyx in western Algeria are summarized to two large layers, the Bouhanifia and the Ain Takbalat deposits. Their formation is related to the hydrothermalism following the great fault of Tafna. The travertine formed in water overflow while onyx is set up along the lines of outputs of the sewage of dissolved CaCo3. The results obtained show a good correlation between petrography and the mechanical behavior; the bedding planes and laminations of the travertines give a petrophysical anisotropy across the sample. Two types of mechanical testing: compressive and flexural strength were carried out either parallel or perpendicular to the veins. This test showed that mechanical behavior is guided by the nature, thickness, composition, and orientation of the veins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angeles Garcia-del-Cura M, Benavente D, Martinez-Martinez J, Cueto N (2012) Sedimentary structures and physical properties of travertine and carbonate tufa building stone. Constr Build Mater 28:456–467

    Article  Google Scholar 

  • Anon (1999) Méthode d’essai sur la pierre naturelle – Détermination de la résistance à la compression simple. UNE-EN

  • Anon (2002) Méthode d’essai sur la pierre naturelle. Détermination de la résistance à la traction par flexion. UNE-EN 13161

  • Barruol G, Kern Z (1996) Seismic anisotropy and shear-wave splitting in lower crust und upper mantle rocks from the Ivrea zone experimental and calculated data. Phys Earth Planet Inter 95:175–194

    Article  Google Scholar 

  • Benavente D, Cultrone G, Gomez-Heras M (2008) The combined influence of mineralogical, hygric and thermal properties on the durability of porous building stones. Eur J Mineral 20:673–685

    Article  Google Scholar 

  • Bertoletti M (2002) In: Ungaro L, De Nuccio M (eds) Trapezoforo con protomo di pantera. I Marmi colorati della Roma imperiale, Venezia, pp 386–387

    Google Scholar 

  • Chentout M, Alloul B, Dj B (2014) The relation between the petrographic, physico-mechanical properties and the use of some deposit paving in Algeria. Eng Geol Soc Territory. doi:10.1007/978-3-319-09048-1-61

    Google Scholar 

  • Coca P, Rosique J (1992) Ciencia de materiales. Pirámide, Madrid

    Google Scholar 

  • Çobanoglu I, Çelik SB (2008) Estimation of uniaxial compressive strength from point load strength, Schmidt harness and P-wave velocity. Bull Eng Geol Environ 67:491–498

    Article  Google Scholar 

  • Del Rio LM, Lopez F, Esteban FJ, Tejado JJ, Mota M, Gonzàlez I, San Emeterio JL, Ramos A (2006) Ultrasonic

  • Demirdag S (2009) The effect of using different polymer and cement based materials in pore filling applications on technical parameters of travertine stone. Constr Build Mater 23:522–530

    Article  Google Scholar 

  • Dubois C (1908) Études sur l’administration et l’exploitation des carrières marbres, porphyre, granit, etc. dans le monde romain, Paris

    Google Scholar 

  • Erdoğan Y (2011) Engineering properties of Turkish travertines. Sci Res Essays 6(21):4551–4566

    Google Scholar 

  • Goudie AS (2006) The Schmidt Hammer in geomorphological research. Prog Phys Geogr 30:703–718

    Article  Google Scholar 

  • Gnoli R (1988) Marmora Romana, 2nd edn. Rome

  • Gnoli R : Marchei MC, Sironi A (1997) Repertorio. In: Borghini G. (ed), Marmi antichi, Roma, pp 142–149

  • Gsell S (1895), Atlas archéologique de l’Algérie. Algiers and Paris

  • Haney MG, Shakoor A, (1994) The relationship between tensile and comprehensive strengths for selected sandstones as influenced by index properties and petrographic characteristic. Proc 7th IAEG Cong. Lisbon, Portugal, Vol 2: pp 493–500

  • Hatzor YH, Palchik V (1997) The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. Int J Rock Mech Min Sci 34:805–816

    Article  Google Scholar 

  • Isık EC, Ozkahraman HT (2010) An economic solution to high quality travertine filling. Constr Build Mater 24:2619–2627

    Article  Google Scholar 

  • Jackson MD, Marra F, Hay RL, Cawood C, Winkler EM (2005) The judicious selection and preservation of tuff and travertine building stone in ancient Rome. Archaeometry 47:485–510

  • Jaeger JC, Cook NGW (1976) Fundamentals of rock mechanics, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  • Karpuz C, Paşamehmetoğlu AG (1997) Field characterization of weathered Ankara andesites. Eng Geol 46:1–17

    Article  Google Scholar 

  • Kahraman S (2001) A correlation between P-wave velocity, number of joints and Schmidt hammer rebound number. Int J Rock Mech Min Sci 38:729–733

    Article  Google Scholar 

  • Kahraman S (2007) The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics 46(4):341–348

    Article  Google Scholar 

  • Kahraman S, Yeken T (2008) Determination of physical properties of carbonate rocks from P-wave velocity. Bull Eng Geol Environ 67:277–281

    Article  Google Scholar 

  • Lazzarini L (2002) La determinazione della provenienza delle pietre decorative usate dai romani. In: De Nuccio M; Ungaro L (eds) : I marmi colorati della Roma imperiale, Venezia, pp 223–265.

  • Lazzarini L (2009) The distribution and re-use of the colored marbles in the Roman Empire. In: Y. Maniatis (ed.), ASMOSIA VII: Bulletin de Correspondance Hellénique, supplement 51: pp 459–484

  • Molina E, Cultrone G, Sebastián E, Alonso FJ, Carrizo L, Gisbert J, Buj O (2013) The pore system of sedimentary rocks as a key factor in the durability of building materials. Eng Geol 118:110–121

    Article  Google Scholar 

  • Murat Y, Hurriyet A (2013) Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters. Constr Build Mater 47:1010–1019

    Article  Google Scholar 

  • NF P94-411 (2002) Détermination de la vitesse de propagation des ondes ultrasonore au laboratoire- Méthode par transparence

  • Pentecost A, Viles HA (1994) A review and reassessment of travertine classification. Geogr Phys Quaternaire 48:305–314

    Article  Google Scholar 

  • Playfair RL (1895) Handbook for Travellers in Algeria and Tunis, London

  • Přikryl R (2001) Some microstructural aspects of strength variation in rocks. Int J Rock Mech Min Sci 38:671–682

    Article  Google Scholar 

  • Sabatakakis N, Koukis G, Tsiambaos G, Papanakli S (2008) Index properties and strength variations controlled by microstructure for sedimentary rocks. Eng Geol 97:80–90

    Article  Google Scholar 

  • Sanders JE, Friedman GM (1967) Origin and occurrence of limestones. In: Chilingar GV, Bissel HJ, Fairbridge RW (eds) Carbonate rocks, Developments in sedimentology, vol 9A. Elsevier, Amsterdam, pp 169–265

    Google Scholar 

  • Tawab AM (1970) Marbre et pierre ornementales oranaise étude géologique (BET – SONAREM)

  • Török A (2006) Influence of fabric on the physical properties of limestones. In: Kourkoulis SK (ed) Fracture and failure of natural building stones. Springer, Dordrecht, pp 487–495

    Chapter  Google Scholar 

  • Török Á, Vásárhelyi B (2010) The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Eng Geol 115:237–245

  • Tsiambaos G, Sabatakakis N (2004) Considerations on strength of intact sedimentary rocks. Eng Geol 72:261–273

    Article  Google Scholar 

  • Vazquez P, Alonso FJ, Carriz L, Molina E, Cultrone G, Blanco M, Zamora I (2013) Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Constr Build Mater 41:868–878

    Article  Google Scholar 

  • Winkler EM (1997) Stone in architecture: properties, durability, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Wong RHC, Chau KT, Wang P (1996) Microcracking and grain size effect in Yeun Long marbles. Int J Rock Mech Min Sci Geomech 33:479–485

    Article  Google Scholar 

  • Yagiz S (2006) Overview on geo-mechanical assessments of Denizli travertines in Turkey. Book of abstracts. In: 10th International association for engineering geology congress, Nottingham, pp 384

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chentout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chentout, M., Alloul, B., Rezouk, A. et al. Experimental study to evaluate the effect of travertine structure on the physical and mechanical properties of the material. Arab J Geosci 8, 8975–8985 (2015). https://doi.org/10.1007/s12517-015-1910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1910-8

Keywords

Navigation