Skip to main content

Advertisement

Log in

Preservation of glacial and interglacial phases in Tethys Himalaya: evidence from geochemistry and petrography of Permo-Carboniferous sandstones from the Spiti region, Himachal Pradesh, India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Through a multidisciplinary approach, including petrology and geochemistry, the sedimentary provenance and paleo-weathering of the Permo-Carboniferous Spiti sandstones of Tethys Himalaya are investigated. The Spiti region consists of texturally immature to mature sandstones composed of unsorted to sorted and subangular to subrounded clastic grains dominated by variable amounts of quartz and feldspar accompanied by lithic fragments (mostly metasedimentary, sedimentary, and plutonic grains). They are characterized by moderate to high SiO2 contents, moderate K2O/Na2O ratios, but relatively low mafic contents. Uniform rare earth element (REE) patterns similar to upper continental crustal (UCC) with light REE (LREE) enrichment (LaN/SmN = 3.91), flat heavy REE (HREE; GdN/YbN = 1.21–2.5), and negative Eu anomalies with variable amounts of ΣREE and Eu anomalies (0.4–0.8) suggest that hydraulic sorting played a significant role. The striking similarities of the multi-elemental spider diagrams of the Spiti sandstones and the Himalayan granitoids indicate that sediments are sourced from the Proterozoic and Cambro-Ordovician orogenic belts of the Himalayan region. The nature of the feldspar observed in thin sections from most altered to euhedral pristine minerals corresponding to Carboniferous to lower Permian sandstones strongly indicates a change in climate from most favorable conditions for rapid feldspar alteration (humid) to conditions where negligible alteration is possible (arid and glacial). It is found that the chemical index of alteration (CIA) values of these sandstones accorded with inferences based on modified chemical index of alteration (CIX) and αCa values, and sedimentologic and paleontological evidence, discriminating well between warm-humid (indicated by high CIA values) and arid-glacial (representing low CIA) conditions in the Spiti basin. Thus, these results document a complete record of glacial and interglacial phases in the Permocarboniferous Spiti sandstones, and the interpretations are consistent with other such studies on the Phanerozoic glaciation events on Gondwana supercontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bagati TN (1990) Lithostratigraphy and facies variation in the Spiti basin (Tethys) Himachal Pradesh India. Himal Geol 1:35–47

    Google Scholar 

  • Bagati TN, Kumar R, Ghosh SK (1991) Regressive­transgressive sedimentation in the Ordovician sequence of the Spiti Tethys basin, Himachal Pradesh, India. Sediment Geol 73:171–184

    Article  Google Scholar 

  • Bahlburg H, Dobrzinski N (2011) A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. In: Arnaud E, Halverson GP, Shields-Zhou G (eds) The Geological Record of Neoproterozoic Glaciations. Geological Society of London, Memoir 36: p 81–92

  • Balaram V, Gnaneshwar Rao T (2003) Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. At Spectrosc 24:206–212

    Google Scholar 

  • Basu A, Young SW, Suttner LJ, James WC, Mack GH (1975) Reevaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. J Sediment Petrol 45:873–882

    Google Scholar 

  • Bhanot VB, Bhandari AK, Sing VP, Kansal AK (1979) Geochronological and geological studies on a granite of higher Himalaya, NE of Manikaran, Himachal Pradesh. J Geol Soc India 20:90–94

    Google Scholar 

  • Bhargava ON (2008) An updated introduction to the Spiti geology. J Palaeontol Soc India 53:113–129

    Google Scholar 

  • Bhargava ON, Bassi UK (1998) Geology of Spiti-Kinnaur Himachal Himalaya. Geological Survey of India, Memoir 124: p 210

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Bhattacharya HN, Chakraborty A, Bhattacharya B (2005) Significance of transition between Talchir formation and Karharbari formation in lower Gondwana basin evolution — a study in West bokaro coal basin, Jharkhand, India. J Earth Syst Sci 114:275–286

    Article  Google Scholar 

  • Bhattacharya B, Bhattacharya HN (2007) Implications of trace fossil assemblages from Late Paleozoic glaciomarine Talchir Formation, Raniganj Basin, India. Gondwana Res 12:509–524

    Article  Google Scholar 

  • Bhattacharya HN, Bhattacharya B (2010) Soft-sediment deformation structures from an ice-marginal storm-tide interactive system, Permo-Carboniferous Talchir Formation, Talchir Coalbasin, India. Sediment Geol 223:380–389

    Article  Google Scholar 

  • Caironi V, Garzanti E, Sciunnach D (1996) Typology of detrital zircon as a key to unravelling provenance in rift siliciclastic sequences: Permo-Carboniferous of Spiti, N India. Geodin Acta 9:101–113

    Article  Google Scholar 

  • Condie KC, Wronkiewicz DJ (1990) The Cr/Th ratio in Precambrian pelites from Kaapaal craton as an index of craton evolution. Earth Planet Sci Lett 97:256–267

    Article  Google Scholar 

  • Condie KC, Marais DJD, Abbott D (2000) Geologic evidence for a mantle super plume event at 1.9 Ga. Geochem Geophys Geosyst 1:2000GC–000095

    Article  Google Scholar 

  • Condie KC, Marais DJD, Abbott D (2001) Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes and paleoclimates. Precambrian Res 106:239–260

    Article  Google Scholar 

  • Cullers RL (1994) The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Acta 58:4955–4972

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales siltstones and sandstones of Pennsylvanian Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Descourvieres C, Hartog N, Patterson BM, Oldham CE, Prommer H (2010) Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Appl Geochem 25:261–275

    Article  Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. Am Assoc Pet Geol Bull 63:2164–2182

    Google Scholar 

  • Draganits E, Mawson R, Talent JA, Krystyn L (2002) Lithostratigraphy, conodont biostratigraphy and depositional environment of the Middle Devonian Givetian to Early Carboniferous Tournaisian Lipak Formation in the Pin Valley of Spiti, NW India. Riv Ital Paleontol Stratigr 108:7–35

    Google Scholar 

  • Draganits E, Schlaf J, Grasemann B, Argles T (2008) Giant submarine landslide grooves in the Neoproterozoic Lower Cambrian Phe Formation, northwest Himalaya: Mechanisms of formation and palaeogeographic implications. Sediment Geol 205:126–141

    Article  Google Scholar 

  • Ernst RE, Bleeker W (2010) Large igneous provinces (LIPs) giant dyke swarms and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can J Earth Sci 47:695–739

    Article  Google Scholar 

  • Gaetani M, Casnedi R, Fosi E, Garzanti E, Jadoul F, Nicora A, Tintori A (1986) Stratigraphy of the Tethys Himalaya in zanskar, Ladakh, intial report. Riv Ital Paleontol Stratigr 91:443–478

    Google Scholar 

  • Gaillardet J, Dupre B, Allegre CJ (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer. Geochim Cosmochim Acta 63:4037–4051

    Article  Google Scholar 

  • Garzanti E, Andó S, France-Lanord C, Censi P, Vignola P, Galy V, Lupker M (2011) Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt. Ganga–Brahmaputra, Bangladesh. Earth Planet Sci Lett 302:107–120

    Article  Google Scholar 

  • Garzanti E, Ando S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y (2010) Mineralogical and chemical variability of fluvial sediments. 1. Bed- load sand: Ganga-Brahmaputra, Bangladesh. Earth Planet Sci Lett 299:368–381

    Article  Google Scholar 

  • Garzanti E, Angiolini L, Sciunnach D (1996) The mid-carboniferous to lowermost Permian succession of Spiti Po group and Ganmachidam formation tethys Himalaya, northern India: Gondwana glaciation and rifting of Neo-Tethys. Geodin Acta 9:78–100

    Article  Google Scholar 

  • Garzanti E, Angiolini L, Brunton H, Sciunnach D, Balini M (1998) The Bashkirian Fenestella shales and the Moscovian Chaetetid shales of the Tethys Himalaya: South Tibet, Nepal and India. J Asian Earth Sci 16:119–141

    Article  Google Scholar 

  • Garzanti E, Casnedi R, Jadoul F (1986) Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya. Sediment Geol 4:237–265

    Article  Google Scholar 

  • Garzanti E, Doglioni C, Vezzoli G, Ando S (2007) Orogenic belts and orogenic sediment provenances. J Geol 115:315–334

    Article  Google Scholar 

  • Garzanti E, Padoan M, Ando S, Resentini A, Vezzoli G, Lustrino M (2013) Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. J Geol 121:547–580

    Article  Google Scholar 

  • Garzanti E, Vermeesch P, Padoan M, Resentini A, Vezzoli G, Ando S (2014) Provenance of passive margin sand:South Africa. J Geol 122:17–42

    Article  Google Scholar 

  • Garzanti E, Vezzoli G, Ando S, Paparella P, Clift PO (2005) Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis. Earth Planet Sci Lett 229:287–302

    Article  Google Scholar 

  • Golonka J, Ross MI, Scotese CR (1994) Phanerozoic Paleogeographic and paleoclimate modeling maps. In: Embry AF, Beauchamp B, Glass DJ (eds) Pangea: global environments and resources. Canadian Society of Petroleum Geologists, Memoir, p. 1–44

  • Gonzalez-Alvarez I, Kerrich R (2010) REE and HFSE mobility due to protracted flow of basinal brines in the Mesoproterozoic belt-purcell supergroup, Laurentia. Precambrian Res 177:291–307

    Article  Google Scholar 

  • Islam R, Upadhyay R, Ahmad T, Thakur VC, Sinha AK (1999) Pan-African magmatism and sedimentation in the NW Himalaya. Gondwana Res 2:263–270

    Article  Google Scholar 

  • Jain AK, Goel RK, Nair NGK (1980) Implication of Pre-mesozoic orogeny in the geological evolution of the Himalaya and Indo-Gangetic plains. Tectonophysics 62:67–86

    Article  Google Scholar 

  • Kohn MJ, Paul SK, Corrie SL (2010) The lower lesser Himalayan sequence: a Paleoproterozoic arc on the northern margin of the Indian plate. Geol Soc Am Bull 122:323–335

    Article  Google Scholar 

  • Leach DL, Bradley D, Huston D, Pisarevsky S, Taylor GS (2010) Sediment-hosted lead–zinc deposits in Earth History. Econ Geol 105:593–625

    Article  Google Scholar 

  • Long S, Mcquarrie N, Tobgay T, Rose C, Gehrels G, Grujic D (2011) Tectonostratigraphy of the Lesser Himalaya of Bhutan: Implications for the along-strike stratigraphic continuity of the northern Indian margin. Geol Soc Am Bull 123:1406–1426

    Article  Google Scholar 

  • McLennan SM (1993) Weathering and global denudation. J Geol 101:295–303

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:2000, GC000109

    Article  Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnnson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. Geological Society of America, Special Paper 284: 21–40

  • McLennan SM, Hemming SR, Taylor SR, Eriksson KA (1995) Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, south western North America. Geochim Cosmochim Acta 59:1153–1177

    Article  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea Turbidites-crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050

    Article  Google Scholar 

  • Mehta PK (1978) Rb/Sr Geochronology of the Kulu-Mandi belt: its implication for the Himalayan tectogenesis: a reply. Geol Rundsch 68:383–392

    Article  Google Scholar 

  • Miller CH, Klotzli U, Frank W, Thöni M, Grasemann B (2000) Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism. Precambrian Res 103:191–206

    Article  Google Scholar 

  • Murali AV, Parthasarathy R, Mahadevan TM, Sankar-Das M (1983) Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environment: a case study on Indian zircons. Geochim Cosmochim Acta 47:2047–2052

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Goodge JW, Fanning CM, Williams IS, Peng S, Bhargava ON, Parcha SK, Pogue KR (2010) Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian–Ordovician. Geol Soc Am Bull 122:1660–1670

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Paulsen T, Williams I, Parcha SK, Thompson KR, Bowring SA, Peng SC, Ahluwalia AD (2003) Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett 212:433–441

    Article  Google Scholar 

  • Myrow PM, Thompson KR, Hughes NC, Paulsen TS, Sell BK, Parcha SK (2006) Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India. Geol Soc Am Bull 118:491–510

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamics and kinetic consideration. Geochim Cosmochim Acta 48:1223–1234

    Article  Google Scholar 

  • Nesbitt HW, Young GM (2004) Ancient climatic and tectonic settings inferred from paleosols developed on igneous rocks. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: Tempos and Events: Developments in Precambrian Geology, vol 12. Elsevier, Amsterdam, pp 482–493

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 199:715–717

    Article  Google Scholar 

  • Rashid SA, Islam N (2009) Petrogenesis of a crustal-derived Palaeoproterozoic Bomdila Orthogneiss, Arunachal Pradesh, Northeast Lesser Himalaya. In: Kumar S (ed) Magmatism, Tectonism and Mineralization. McMillan Publishers, New Delhi, pp 92–101

    Google Scholar 

  • Rashid SA, Zainuddin SM (1995) The lower Paleozoic granitic magmatism near Ranikhet, Kumaon Himalaya: major and trace element geochemistry and tectonic setting. J Geol Soc India 46:15–25

    Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94:635–650

    Article  Google Scholar 

  • Saini NK, Mukherjee PK, Rathi MS, Khanna PP, Purohit KK (1998) A new geochemical reference sample of granite (DG-H) from Dalhousie, Himachal Himalaya. J Geol Soc India 52:603–606

    Google Scholar 

  • Sakagami S, Sciunnach D, Garzanti E (2006) Late Paleozoic and Triassic Bryozoans from the Tethys Himalaya: N India, Nepal and S Tibet. Facies 52:279–298

    Article  Google Scholar 

  • Saki H (1985) Geology of the kali Gandaki supergroup of the Lesser HIMALAYAS in Nepal. Mem Fac Sci Kyushu Univ Dep Geol 25:337–397

    Google Scholar 

  • Scheffler K, Hoernes S, Schwark L (2003) Global changes during carboniferous–Permian glaciation of Gondwana: linking polar and equatorial climate evolution by geochemical proxies. Geology 31:605–608

    Article  Google Scholar 

  • Scholle PA (1979) A color illustrated guide to constituents, textures, cements, and porosities of sandstones and associated rocks: Tulsa, Oklahoma: American association of petroleum geologists. Memoir 28:p 201

    Google Scholar 

  • Sciunnach D, Garzanti E (1997) Detrital chromian spinels record tectono magmatic evolution from Carboniferous rifting to Permian spreading in Neotethys (India, Nepal and Tibet). In: Messiga B, Tribuzio R (eds) from rifting to drifting in present-day and fossil ocean basins. Ofioliti 22: 101–110

  • Sciunnach D, Garzanti E (2012) Subsidence history of the Tethys Himalaya. Earth Sci Rev 111:179–198

    Article  Google Scholar 

  • Scotese CR, Barrett SF (1990) Gondwana's movement over the South Pole during the Palaeozoic: evidence from lithological indicators of climate. In: McKerrow WS, Scotese CR. (eds) Paleozoic Biogeography and Palaeogeography. Geological Society of London Memoir 12: p. 75–86

  • Sharma KK, Rashid SA (2001) Geochemical evolution of Peraluminous Paleoproterozoic bandal orthogneiss, NW Himalaya, Himachal pradesh, India: Implications for the ancient crustal growth in the Himalaya. J Asian Earth Sci 19:413–428

    Article  Google Scholar 

  • Srikantia SV, Bhargava ON (1998) Geology of Himachal Pradesh. Geological Society of India, Bangalore, p 416

    Google Scholar 

  • Suttner LJ, Dutta PK (1986) Alluvial sandstone composition and paleoclimate, 1 Frame work mineralogy. J Sediment Petrol 56:329–345

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Trivedi JR, Gopalan K, Valdiya KS (1984) Rb-Sr ages of granitic rocks within the Lesser Himalayan nappes, Kumaun, India. J Geol Soc India 25:641–654

    Google Scholar 

  • Veevers JJ, Tewari RC (1995) Gondwana master basin of Peninsular India—between Tethys and the interior of the Gondwanaland-province of Pangea. Mem Geol Soc Am 187:1–73

    Google Scholar 

  • Williams JC, Basu AR, Bargava ON, Ahluwalia AD, Hannigan RE (2012) Resolving original signatures from a sea of overprint- The geochemistry of the Gungri Shale (upper Permian) Spiti Valley India. Chem Geol 324:59–72

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

  • Young GM (2004) Earth’s two great Precambrian glaciations: aftermath of the “snowball Earth” hypothesis. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: Tempos and Events Elsevier Amsterdam, p 440–448

Download references

Acknowledgments

We are thankful to the Chairman, Department of Geology, AMU, Aligarh, for providing necessary facilities. We are grateful to Dr. O.N. Bhargava, for helpful suggestions and discussions. We are also thankful to the Department of Science & Technology, New Delhi, for supporting this work in the form of Research Grant (SR/S4/ES-422/2009) to SAR. The authors are thankful to the reviewer Dr. M.E.A. Mondal and an anonymous reviewer for their suggestions which have helped in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik A. Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, S.A., Ganai, J.A. Preservation of glacial and interglacial phases in Tethys Himalaya: evidence from geochemistry and petrography of Permo-Carboniferous sandstones from the Spiti region, Himachal Pradesh, India. Arab J Geosci 8, 9345–9363 (2015). https://doi.org/10.1007/s12517-015-1877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1877-5

Keywords

Navigation