Skip to main content
Log in

Integrated petrographic, mineralogical, and geochemical study of the Late Cretaceous–Early Tertiary Dakhla Shales, Quseir–Nile Valley Province, central Egypt: implications for source area weathering, provenance, and tectonic setting

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Late Cretaceous–Early Tertiary shales of the Dakhla Formation of the Quseir–Qena Province, central Egypt, were analyzed for major and selected trace elements to infer their provenance, source rock paleoweathering intensity, and tectonic setting. The studied formation consists of a series of marls and shales and is subdivided into two members, namely Beida Shale Member at the top and Hamama Marl Member at the base. The Dakhla Shales are texturally classified as mudstones. Mineralogically, these shales consist mainly of smectite and kaolinite. Chemical analysis of the major and trace elements generally exhibits a uniform distribution throughout the Upper Maastrichtian–Lower Paleocene sediments. SiO2, Al2O3, and Fe2O3 contents are higher than the values reported for the post-Archaean Australian shale (PAAS), while TiO2 and Na2O contents are found to be lower. Bivariate plot of Zr versus TiO2 diagram indicates that intermediate to felsic igneous rocks constitute the main supplying source rock. Average chemical index of alteration (CIA), plagioclase index of alteration (PIA), and chemical index of weathering (CIW) values (81, 92, and 93 %, respectively) imply intermediate to intense weathering of the source material in a semiarid climate. The bivariate discriminant function diagram reveals an active continental to passive margin setting for the Dakhla Shales. The developed soils were transported by rivers to the depositional basin. The inferred tectonic setting for the Late Cretaceous–Early Tertiary Dakhla Shales in Quseir–Qena Province is in agreement with the tectonic evolutionary history of central Egypt during the Late Cretaceous–Early Tertiary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdel Razik TM (1972) Comparative studies on the Upper Cretaceous Early Paleocene sediments on the Red Sea Coast, Nile Valley and Western Desert, 8th Arab Petrol Cong Algiers Paper 71 (B-3), 23 pp

  • Ahmed HA (1997) Mineralogical and geochemical studies of the black shales intercalated with phosphorite deposits at Abu Tartur area Western Desert, Egypt. M.Sc. thesis, Ain Shams Uni Cairo, Egypt, 284p

  • Alvarez NO, Roser BP (2007) Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: source weathering, provenance and tectonic setting. J South Am Earth Sci 23(4):271–289

    Article  Google Scholar 

  • Armstrong-Altrin JS (2009) Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico. Rev Mex Cienc Geol 26(3):764–782

    Google Scholar 

  • Armstrong-Altrin JS (2014) Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. Int Geol Rev. doi:10.1080/00206814.2014.936055

    Google Scholar 

  • Armstrong-Altrin JS, Verma SP (2005) Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting. Sediment Geol 177:115–129

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74:285–297

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Kasper-Zubillaga JJ, Carranza-Edwards A, Garcia D, Eby N, Balaram V, Cruz-Ortiz NL (2012) Geochemistry of beach sands along the western Gulf of Mexico, Mexico: implication for provenance. Chem Erde Geochem 72:345–362

    Article  Google Scholar 

  • Armstrong-Altrin JS, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee YI, Balaram V, Cruz-Martínez A, Avila-Ramírez G (2013) Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: implications for source-area weathering, provenance, and tectonic setting. C R Geosci 345:185–202

    Article  Google Scholar 

  • Armstrong-Altrin JS, Nagarajan R, Lee YI, Kasper-Zubillaga JJ, Córdoba-Saldaña LP (2014) Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: implication for provenance. Turk J Earth Sci 23:533–558

    Article  Google Scholar 

  • Armstrong-Altrin JS, Machain-Castillo ML, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza JA, Ruíz-Fernández AC (2015) Geochemistry of deep sea sediments from the south-western Gulf of Mexico, Mexico: implication for depositional environment. Cont Shelf Res. doi:10.1016/j.csr.2015.01.003

    Google Scholar 

  • Awad GH, Ghobrial MG (1965) Zonal stratigraphy of the Kharga Oasis. Geol Surv Egypt 34:77

    Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Article  Google Scholar 

  • Bhatia MR (1985) Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sediment Geol 45:97–113

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Blatt H (1985) Provenance studies and mudrocks. J Sediment Petrol 55:69–75

    Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer, Berlin, 623 pp

    Book  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  • Condie KC, Boryta MD, Liu J, Quian X (1992) The origin of khondalites: geochemical evidence from the Archean to early Proterozoic granulite belt in the North China craton. Precam Res 59:207–223

    Article  Google Scholar 

  • Cox R, Lower DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59:2919–2940

    Article  Google Scholar 

  • Cullers RL (1995) The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the West Mountains region, Colorado, U. S. A. Chem Geol 123:107–131

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, p 646

  • Deepthi K, Natesan U, Muthulakshmi AL, Ferrer VA, Venugopalan VP, Narasimhan SV (2012) Geochemical characteristics and depositional environment of Kalpakkam, Southeast coast of India. Environ. Earth Sci

  • Deru X, Xuexang G, Pengehun L, Guanghao C, Bin X, Bachinski R, Zhuanli H, Gonggu F (2007) Mesoproterozoic–Neoproterozoic transition: geochemistry, provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block, South China. J Asian Earth Sci 29:637–650

    Article  Google Scholar 

  • El-Hawat AS (1997) Sedimentary basins of Egypt: an overview of dynamic stratigraphy. In: SeJley RC (ed) African basins, sedimentary basins of the world, 3. Amsterdam, Elsevier, pp 39–85

    Google Scholar 

  • El-Azabi MH, Farouk S (2010) High resolution sequence stratigraphy of the Maastrichtian–Ypresian succession along the eastern scarp face of Kharga Oasis, southern Western Desert, Egypt. Sedimentology, 1–35

  • El-Dahhar MA (1987) Diagenetic pyrite framboids in the phosphate deposits of Abu Tartur area, Western Desert, Egypt. J Afr Earth Sci 6:807–811

    Google Scholar 

  • Faris M (1984) The Cretaceous/Tertiary boundary in Central Egypt (Duwi region, Nile Valley, Kharga and Dakhla Oasis). N Jb Geol Paläont (Monatsh) Stuttgart 7:385–392

    Google Scholar 

  • Faris M, Strougo A (1998) The lower Libyan of Farafra (Western Desert) and Luxor (Nile Valley): correlation by calcerous nannofossils. Middle East Research Center, Ain Shams Univ. Earth Sci Ser 12:137–156

    Google Scholar 

  • Faris M, Abd El-Hameed AT, Marzouk AM, Ghandour LM (1999) Early Paleogene calcareous nannofossil and planktonic foraminiferal biostratigraphy in Central Egypt. N Jb Geol Paläont (Abh) 213–2:261–288

    Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of Kmetasomatism in sedimentary rocks and paleosols with implications for palaeoweathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Fedo CM, Eriksson KA, Krogstad EJ (1996) Geochemistry of shales from the Archean (∼3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochim Cosmochim Acta 60:1751–1763

    Article  Google Scholar 

  • Floyd PA, Franke W, Shail R, Dorr W (1989) Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precam Res 45:203–214

    Article  Google Scholar 

  • Fyffe LR, Pickerill RK (1993) Geochemistry of Upper Cambrian-Lower Ordovician black shale along a northeastern Appalachian transect. Geol Soc Am Bull 105:896–910

    Article  Google Scholar 

  • Germann K, Bock WD, Ganz H, Schröter T, Tröger U (1987) Depositional conditions of Late Cretaceous phosphorites and black-shales in Egypt. Berl Geowiss Abh A 75(3):629–668

    Google Scholar 

  • Ghandour IM, Harue M, Wataru M (2003) Mineralogical and chemical characteristics of Bajocian-Bathonian shales, G. Al-Maghara, North Sinai, Egypt: climatic and environmental significance. Geochem J 37:87–108

    Article  Google Scholar 

  • Ghosh S, Sarkar S, Ghosh P (2012) Petrography and major element geochemistry of the Permo-Triassic sandstones, central India: implications for provenance in an intracratonic pull-apart basin. J Asian Earth Sci 43:207–240

    Article  Google Scholar 

  • Gindy AR (1983) Factors controlling the clay mineralogy of Egyptian Phanerozoic mudrocks and marls. Geol Jb B 49:3–25, Hannover

    Google Scholar 

  • Graver JI, Scott TJ (1995) Trace elements in shale as indicators of crustal provenance and terrain accretion of the southern Canadian cordillera. Geol Soc Am Bull 107:440–453

    Article  Google Scholar 

  • Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The North American Shale Composite: its compilations, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482

    Article  Google Scholar 

  • Hallam A, Grose JA, Ruffell AH (1991) Paleoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr Palaeoclimatol Palaeoecol 81:173–187

    Article  Google Scholar 

  • Hardy R, Tucker M (1988) X-ray powder diffraction of sediments. In: Tucker M (ed) Techniques in sedimentology. Cambridge, Blackwell, pp 191–228

    Google Scholar 

  • Harnois L (1988) The CIW index: a new chemical index of weathering. Sed Geol 55:319–322

    Article  Google Scholar 

  • Hayashi KI, Fujisawa H, Holland HD, Ohomoto H (1997) Geochemistry of ~1.9 Ga sedimentary rocks from northern Labrador, Canada. Geochim Cosmochim Acta 61(19):4115–4137

    Article  Google Scholar 

  • Hendriks F (1985) Upper Cretaceous to lower Tertiary sedimentary environments and clay mineral associations in the Kharga Oasis area, Egypt. N Jb Geol Paläont Mh 10:579–591

    Google Scholar 

  • Hendriks F (1988) Die Kreide und das Alttertiar in Südostägypten: Sedimentologie und Tonmineralogie eines intrakratonalen Ablagerungsraumes. Berl Geowiss Abh A 104:129, Berlin

    Google Scholar 

  • Hendriks F, Luger P, Bowitz J, Kallenback H (1987) Evolution of depositional environments of SE-Egypt during the Cretaceous and Lower Tertiary. Berl Geowiss Abh A 75:49–82, Berlin

    Google Scholar 

  • Hendriks F, Luger P, Strouhal A (1990) Early tertiary marine palygorskite and sepiolite neoformation in SE Egypt. Z Deut Geol Ges 141:87–97

    Google Scholar 

  • Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol 58:820–829

    Google Scholar 

  • Ismael SI (1996) Mineralogical and geochemical studies of the black shales intercalated with the phosphate deposits along the Red Sea coast, Egypt. Ph.D. thesis. Ain Shams Uni Cairo, Egypt.

  • Issawi B (1972) Review of Upper Cretaceous-Lower Tertiary stratigraphy in Central and Southern Egypt. Am Assoc Pet Geol Bull 56:1448–1463

    Google Scholar 

  • Jafarzadeh M, Hosseini-Barzi M (2008) Petrography and geochemistry of Ahwaz sandstone member of Asmari Formation, Zagros, Iran: implications on provenance and tectonic setting. Rev Mex Cienc Geol 25(2):247–260

    Google Scholar 

  • Kampunzu AB, Cailteux JLH, Moine B, Loris HNBT (2005) Geochemical characterization, provenance, source and depositional environment of ‘Roches Argilo-Talqueuses’ (TAR) and Mines Subgroups sedimentary rocks in the Neoproterozoic Katangan Belt (Congo): lithostratigraphic implications. J Afr Earth Sci 42:119–133

    Article  Google Scholar 

  • Klitzsch E (1990) The Paleozoic. In: Said R (ed) The geology of Egypt. A.A. Balkema, Rotterdam, pp 393–406

    Google Scholar 

  • Long X, Yuan C, Sun M, Xiao W, Wang Y, Cai K, Jiang Y (2012) Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, central Asia: evidence for a northward-derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Res 22:554–566

    Article  Google Scholar 

  • Maynard JB, Valloni R, Yu HS (1982) Composition of modern deep-sea sands from arc-related basins, vol. 10. Geol Soc London Spec Publ pp 551–561

  • McCann T (1991) Petrological and geochemical determination of provenance in the southern Welsh Basin. In: Morton AC, Todd SP, Haughton PDW (eds) Developments in sedimentary provenance studies, vol. 57. Geol Soc London Spec Publ, pp 215–230

  • McLennan SM (1993) Weathering and global denudation. J Geol 101:295–303

    Article  Google Scholar 

  • McLennan SM, Nance WB, Taylor SR (1980) Rare earth element-thorium correlation in sedimentary rocks and the composition of the continental crust. Geochim Cosmochim Acta 44:1833–1839

    Article  Google Scholar 

  • McLennan SM, Hemming S, Mcdaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson JM, Basu A (eds) Processes controlling the composition of clastic sediments. Geol Soc Am Spec Pap 284:21–40

  • Millot G (1970) Geology of clays. Springer, Heidelberg, 429 p

    Book  Google Scholar 

  • Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York, 378 pp

    Google Scholar 

  • Moosavirad SM, Janardhana MR, Sethumadhav MS, Moghadam MR, Shankara M (2011) Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: provenance, source weathering and tectonic setting. Chem Erde 71:279–288

    Article  Google Scholar 

  • Nagarajan R, Madhavaraju J, Nagendra R, Armstrong-Altrin JS, Moutte J (2007) Geochemistry of Neoproterozoic shales of the Rabanpalli formation, Bhima Basin, northern Karnataka, southern India: implications for provenance and paleoredox conditions. Rev Mex Cienc Geol 24(2):150–160

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48:1523–1534

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 97:129–147

    Article  Google Scholar 

  • Nesbitt HW, Markovics G, Price RC (1980) Chemical processes affecting alkalies and alkaline earths during continental weathering. Geochim Cosmochim Acta 44:1695–1766, London

    Google Scholar 

  • Nesbitt HW, Fedo CM, Young GM (1997) Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. J Geol 105:173–191

    Article  Google Scholar 

  • Obaidalla NA, Hewaidy AA, Hosny AM, Mahfouz KH (2008) The Paleocene/Eocene transition at Kharga Oasis, Western Desert, Egypt: litho-biostratigraphy and paleoenvironment, 8th Ann Meet Paleontol Soc, Cairo, Abstracts, pp. 7–8

  • Ollier CD, Galloway RW (1990) The laterite profile ferricrete and unconformity. Canda Verlag, Cremlingen 17:97–109

    Google Scholar 

  • Pettijohn FJ (1975) Sedimentary rocks, 3rd edn. Harper and Row, New York, 628 p

    Google Scholar 

  • Prevot L, El Faleh EM, Lucas J (1989) Details on synthetic apatites formed through bacterial mediation: mineralogy and chemistry of the products. In: Lucas J, Cook PJ, Prevot L (eds) Apatite and phosphorites. Sci Geol Bull Strasbourg 42:237–254

  • Purevjav N, Roser B (2012) Geochemistry of Devonian-Carboniferous clastic sediments of the Tsetserleg terrane, Hangay Basin, central Mongolia: provenance, source weathering, and tectonic setting. Island Arc 21:270–287

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sand-stone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94(5):635–650

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Ryan KM, Williams DM (2007) Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chem Geol 242:103–125

    Article  Google Scholar 

  • Said R (1960) Planktonic foraminifera from the Thebes Formation Luxor, Egypt. Micropaleontology 6:277–286

    Article  Google Scholar 

  • Said R (1961) Tectonic frame work of Egypt and its influence on the distribution of foraminifera. Am Assoc Pet Geol Bull 45:198–218

    Google Scholar 

  • Said R (1962) The geology of Egypt. Elsevier, New York, 377 p

    Google Scholar 

  • Said R (1990) The geology of Egypt. A.A. Balkema, Rotterdam, 734p

    Google Scholar 

  • Said R (1992) The geology of Egypt. Elsevier, Rotterdam

    Google Scholar 

  • Schieber J, Baird G (2001) On the origin and significance of pyrite spheres in Devonian black shale of North America. J Sediment Res 71(1):155–166

    Article  Google Scholar 

  • Selley RC (1988) Applied sedimentology. Textbook. p 446

  • Selvaraj K, Chen CTA (2006) Moderate chemical weathering of subtropical Taiwan: constraints from solid-phase geochemistry of sediments and sedimentary rocks. J Geol 14:101–116

    Article  Google Scholar 

  • Sugitani K, Horiuchi Y, Adachi M, Sugisaki R (1996) Anomalously low Al2O3/TiO2 values for Archean cherts from the Pilbara Block, Western Australia: possible evidence for extensive chemical weathering on the early earth. Precam Res 80:49–76

    Article  Google Scholar 

  • Surdam RC, Stanley KO (1979) Lacustrine sedimentation during the culminating phase of Eocene Lake Gosiute, Wyoming (Green River Formation). Geol Soc Am Bull 90:93–110

    Article  Google Scholar 

  • Suttner LJ, Dutta PK (1986) Alluvial sandstone composition and palaeoclimate. 1. Framework mineralogy. J Sediment Petrol 56(3):329–345

    Google Scholar 

  • Tantawy AA, Keller G, Adatte T, Stinnesbeck W, Kassab A, Schulte P (2001) Maastrichtian to Paleocene depositional environment of the Dakhla Formation, Western Desert, Egypt: sedimentology, mineralogy and integrated micro- and macrofossil biostratigraphies. Cretac Res 22:795

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312 p

    Google Scholar 

  • Thiry M, Jaquin T (1993) Clay mineral distribution related to rift activity, sea-level changes and paleoceanography in the Cretaceous of the Atlantic Ocean. Clay Miner 28:61–84

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Bull Geol Soc Am 72:175–192

    Article  Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem Geol 355:117–180

    Article  Google Scholar 

  • Vine JD, Tourtelot EB (1970) Geochemistry of black shales—a summary report. Econ Geol 65:253–273

    Article  Google Scholar 

  • Yan Z, Wang Z, Yan Q, Wang T, Guo X (2012) Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling mountains, central China: implications for the tectonic evolution of the Qinling Orogenic Belt. J Sediment Res 82:9–24

    Article  Google Scholar 

  • Zaid SM (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. J Afr Earth Sci 66–7:56–71

    Article  Google Scholar 

  • Zaid SM (2013) Provenance, diagenesis, tectonic setting and reservoir quality of the sandstones of the Kareem Formation, Gulf of Suez, Egypt. J Afr Earth Sci 85:31–52

    Article  Google Scholar 

  • Zaid SM (2015) Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting. J Afr Earth Sci 102:1–17

    Article  Google Scholar 

  • Zaid SM, Gahtani FA (2015) Provenance, diagenesis, tectonic setting and geochemistry of Hawkesbury sandstone (Middle Triassic), southern Sydney Basin, Australia. Turk J Earth Sci 24:72–98

    Article  Google Scholar 

  • Zittel AK (1883) Beitrage zur Geologie und Palaontologie der Libyschen Wuste und der angrenzenden Gebiete von Aegypten. Palaeontographica 30, 3.F., 1, 147, 2, p 237

Download references

Acknowledgments

The author acknowledges the journal reviewers for their very constructive and helpful comments as well as for editorial comments by A. Al-Amri, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir M. Zaid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaid, S.M. Integrated petrographic, mineralogical, and geochemical study of the Late Cretaceous–Early Tertiary Dakhla Shales, Quseir–Nile Valley Province, central Egypt: implications for source area weathering, provenance, and tectonic setting. Arab J Geosci 8, 9237–9259 (2015). https://doi.org/10.1007/s12517-015-1875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1875-7

Keywords

Navigation