Skip to main content

Advertisement

Log in

Impact of terrain complexity on the accuracy of calculations of river channel storage volume derived from measurements of underwater topography

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we discuss the approximate errors that accrue in the approximation of continuous riverbed surfaces using data from discrete topographic surveying points, by evaluating the accuracy of the river channel storage volume calculated from underwater topographic surveying data without acknowledging the measurement errors inherent in data acquisition. Two types of theoretical surfaces with different complexity levels were generated from mathematical expressions and fractal Brownian motion. The reference value of the volume between a theoretical surface and a horizontal reference plane was calculated. Regularly distributed elevation spots were sampled from the theoretical surface to match those sampled in the topographic surveying of the river channel. The volume corresponding to the scale of terrain survey and the relative error of the reference value were computed using the scattered data points. The complexity of the theoretical surface was characterized and quantified using the fractal dimension. Regression analysis showed that there was an apparent positive correlation between the fractal dimension and the relative error, and the correlation coefficient (R 2) was greater than 0.794 for the three case studies of smooth surfaces and nearly 1.0 for the two case studies of rough surfaces. It indicates that the data representativeness of scattered points with the same point density in a flat surface is better than that in a complicated surface. From this study, we can conclude that the topographic fluctuation of the riverbed has an effect on the calculation error of the river channel storage volume derived from measurements of underwater topography, and its degree of influence depends on the complexity level of the terrain. Moreover, this paper provide a distinct approach for analyzing the measurement representation in a terrain survey and more work will involve surface modeling techniques combined with realistic topographic feature to produce more vivid landform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antonelli C, Provansal M, Vella C (2004) Recent morphological channel changes in a deltaı̈c environment. The case of the Rhône River, France. Geomorphology 57(3–4):385–402

    Article  Google Scholar 

  • Arekhi S, Niazi Y, Kalteh AM (2012) Soil erosion and sediment yield modeling using RS and GIS techniques: a case study, Iran. Arab J Geosci 5(2):285–296

    Article  Google Scholar 

  • Arkoc O (2014) Municipal solid waste landfill site selection using geographical information systems: a case study from Çorlu, Turkey. Arab J Geosci 7(11):4975–4985

    Article  Google Scholar 

  • Awawdeh M, Obeidat M, Al-Mohammad M, Al-Qudah K, Jaradat R (2014) Integrated GIS and remote sensing for mapping groundwater potentiality in the Tulul al Ashaqif, Northeast Jordan. Arab J Geosci 7(6):2377–2392

    Article  Google Scholar 

  • Bajabaa S, Masoud M, Al-Amri N (2014) Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arab J Geosci 7(6):2469–2481

    Article  Google Scholar 

  • Bouchahma M, Yan W (2014) Monitoring shoreline change on Djerba Island using GIS and multi-temporal satellite data. Arab J Geosci 7(9):3705–3713

    Article  Google Scholar 

  • Brasington J, Rumsby BT, McVey RA (2000) Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surf Process Landf 25(9):973–990

    Article  Google Scholar 

  • Charlton ME, Large ARG, Fuller IC (2003) Application of airborne LiDAR in river environments: the river Coquet, Northumberland, UK. Earth Surf Process Landf 28(3):299–306

    Article  Google Scholar 

  • Chase CG (1992) Fluvial landsculpting and the fractal dimension of topography. Geomorphology 5(1–2):39–57

    Article  Google Scholar 

  • Chen ZY, Li JF, Shen HT, Wang ZH (2001) Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology 41(2–3):77–91

    Article  Google Scholar 

  • Chen ZY, Chen DC, Xu KQ, Zhao YW, Wei TY, Chen J, Li LQ, Watanabe M (2007) Acoustic Doppler current profiler surveys along the Yangtze River. Geomorphology 85(3–4):155–165

    Article  Google Scholar 

  • Chou YH, Liu PS, Dezzani RJ (1999) Terrain complexity and reduction of topographic data. J Geogr Syst 1(2):179–198

    Article  Google Scholar 

  • Congalton RG (1991) Remote sensing and geographic information system data integration: error sources and research issues. Photogramm Eng Remote Sens 57(6):677–687

    Google Scholar 

  • Foroutan M, Kompanizare M, Ehsani AH (2013) Semiautomatic morphometric land surface segmentation of an arid mountainous area using DEM and self-organizing maps. Arab J Geosci 6(12):4795–4810

    Article  Google Scholar 

  • Fournier A, Fussell D, Carpenter L (1982) Computer rendering of stochastic models. Commun ACM 25(6):371–384

    Article  Google Scholar 

  • French JR (2003) Airborne LiDAR in support of geomorphological and hydraulic modelling. Earth Surf Process Landf 28(3):321–335

    Article  Google Scholar 

  • Fuller IC, Large ARG, Milan DJ (2003) Quantifying development and sediment transfer following chute cutoff in a wandering gravel-bed river. Geomorphology 54(3–4):307–323

    Article  Google Scholar 

  • Gahegan M, Ehlers M (2000) A framework for the modelling of uncertainty between remote sensing and geographic information systems. ISPRS J Photogramm Remote Sens 55(3):176–188

    Article  Google Scholar 

  • Gao J (1998) Impact of sampling intervals on the reliability of topographic variables mapped from grid DEMs at a micro-scale. Int J Geogr Inf Sci 12(8):875–890

    Article  Google Scholar 

  • Goodchild MF (1980) Fractals and the accuracy of geographical measures. J Int Assoc Math Geol 12(2):85–98

    Article  Google Scholar 

  • Goodchild MF, Mark DM (1987) The fractal nature of geographic phenomena. Ann Assoc Am Geogr 77(2):265–278

    Article  Google Scholar 

  • Heritage GL, Fuller IC, Charlton ME, Brewer PA, Passmore DP (1998) CDW photogrammetry of low relief fluvial features: accuracy and implications for reach-scale sediment budgeting. Earth Surf Process Landf 23(13):1219–1233

    Article  Google Scholar 

  • Heuvelink GBM, Burrough PA, Stein A (1989) Propagation of errors in spatial modelling with GIS. Int J Geogr Inf Syst 3(4):303–322

    Article  Google Scholar 

  • Holmgren P (1994) Multiple flow direction algorithm for runoff modeling in grid based elevation models: an empirical evaluation. Hydrol Process 8(4):327–334

    Article  Google Scholar 

  • Jasmin I, Mallikarjuna P (2013) Morphometric analysis of Araniar river basin using remote sensing and geographical information system in the assessment of groundwater potential. Arab J Geosci 6(10):3683–3692

    Article  Google Scholar 

  • Keim RF, Skaugset AE, Bateman DS (1999) Digital terrain modeling of small stream channels with a total-station theodolite. Adv Water Resour 23(1):41–48

    Article  Google Scholar 

  • Kizil U, Tiso L (2011) Evaluation of RTK-GPS and Total Station for applications in land surveying. J Earth Syst Sci 120(2):215–221

    Article  Google Scholar 

  • Klinkenberg B, Goodchild MF (1992) The fractal properties of topography: a comparison of methods. Earth Surf Process Landf 17(3):217–234

    Article  Google Scholar 

  • Kvamme KL, Ernenwein EG, Markussen CJ (2006) Robotic total station for microtopographic mapping: an example from the Northern Great Plains. Archaeol Prospect 13(2):91–102

    Article  Google Scholar 

  • La Barbera P, Rosso R (1989) On the fractal dimension of stream networks. Water Resour Res 25(4):735–741

    Article  Google Scholar 

  • Lam NSN, Qiu HL, Quattrochi DA, Emerson CW (2002) An evaluation of fractal methods for characterizing image complexity. Cartogr Geogr Inf Sci 29(1):25–35

    Article  Google Scholar 

  • Lane SN, Richards KS, Chandler JH (1994) Developments in monitoring and modelling small-scale river bed topography. Earth Surf Process Landf 19(4):349–368

    Article  Google Scholar 

  • Lane SN, Westaway RM, Murray Hicks D (2003) Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf Process Landf 28(3):249–271

    Article  Google Scholar 

  • Lavine A, Gardner JN, Reneau SL (2003) Total station geologic mapping: an innovative approach to analyzing surface-faulting hazards. Eng Geol 70(1):71–91

    Article  Google Scholar 

  • Leung Y, Ma JH, Goodchild MF (2004) A general framework for error analysis in measurement-based GIS. Part 1: the basic measurement-error model and related concepts. J Geogr Syst 6(4):325–354

    Article  Google Scholar 

  • Li LQ, Lu XX, Chen ZY (2007) River channel change during the last 50 years in the middle Yangtze River, the Jianli reach. Geomorphology 85(3–4):185–196

    Article  Google Scholar 

  • Magesh NS, Chandrasekar N (2014) GIS model-based morphometric evaluation of Tamiraparani subbasin, Tirunelveli district, Tamil Nadu, India. Arab J Geosci 7(1):131–141

    Article  Google Scholar 

  • Mandelbrot BB (1967) How long is the coast of Britain. Science 156(3775):636–638

    Article  Google Scholar 

  • Milan DJ, Heritage GL, Hetherington D (2007) Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surf Process Landf 32(11):1657–1674

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological and biological applications. Hydrol Process 5(1):3–30

    Article  Google Scholar 

  • Polidori L, Chorwicz J, Guillande R (1991) Description of terrain as a fractal surface, and application to digital elevation model quality assessment. Photogramm Eng Remote Sens 57(10):1329–1332

    Google Scholar 

  • Pradhan B, Youssef AM (2010) Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3(3):319–326

    Article  Google Scholar 

  • Radice A (2009) Use of the Lorenz curve to quantify statistical nonuniformity of sediment transport rate. J Hydraul Eng ASCE 135(4):320–326

    Article  Google Scholar 

  • Rees WG (2000) The accuracy of digital elevation models interpolated to higher resolutions. Int J Remote Sens 21(1):7–20

    Article  Google Scholar 

  • Reutebuch SE, McGaughey RJ, Andersen HE, Carson WW (2003) Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can J Remote Sens 29(5):527–535

    Article  Google Scholar 

  • Shan J, Zaheer M, Hussain E (2003) Study on accuracy of 1-degree DEM versus topographic complexity using GIS zonal analysis. J Surv Eng ASCE 129(2):85–89

    Article  Google Scholar 

  • Simonson TD, Lyons J, Kanehl PD (1994) Quantifying fish habitat in streams: transect spacing, sample size, and a proposed framework. N Am J Fish Manag 14(3):607–615

    Article  Google Scholar 

  • Sisman Y (2014) The optimization of GPS positioning using response surface methodology. Arab J Geosci 7(3):1223–1231

    Article  Google Scholar 

  • Smith LC, Alsdorf DE, Magilligan FJ, Gomez B, Mertes LAK, Smith ND, Garvin JB (2000) Estimation of erosion, deposition, and net volumetric change caused by the 1996 Skeiðarársandur jökulhlaup, Iceland, from synthetic aperture radar interferometry. Water Resour Res 36(6):1583–1594

    Article  Google Scholar 

  • Stover SC, Montgomery DR (2001) Channel change and flooding, Skokomish River, Washington. J Hydrol 243(3–4):272–286

    Article  Google Scholar 

  • Sun W, Xu G, Gong P, Liang S (2006) Fractal analysis of remotely sensed images: a review of methods and applications. Int J Remote Sens 27(22):4963–4990

    Article  Google Scholar 

  • Surian N, Cisotto A (2007) Channel adjustments, bedload transport and sediment sources in a gravel-bed river, Brenta River, Italy. Earth Surf Process Landf 32(11):1641–1656

    Article  Google Scholar 

  • Vanacker V, Molina A, Govers G, Poesenb J, Derconc G, Deckers S (2005) River channel response to short-term human-induced change in landscape connectivity in Andean ecosystems. Geomorphology 72(1–4):340–353

    Article  Google Scholar 

  • Venkatramanan S, Ramkumar T, Anithamary I, Ganesh P (2013) Morphological characteristics of Tirumalairajan river, East Coast of India—a GIS approach. Arab J Geosci 6(6):1871–1881

    Article  Google Scholar 

  • Veregin H (1996) Error propagation through the buffer operation for probability surface. Photogramm Eng Remote Sens 62(4):419–428

    Google Scholar 

  • Xu TB, Moore ID, Gallant JC (1993) Fractals, fractal dimensions and landscapes—a review. Geomorphology 8(4):245–262

    Article  Google Scholar 

  • Yanalak M (2003) Effect of gridding method on digital terrain model profile data based on scattered data. J Comput Civ Eng 17(1):58–67

    Article  Google Scholar 

  • Yanalak M, Baykal O (2003) Digital elevation model based volume calculations using topographical data. J Surv Eng ASCE 129(2):56–64

    Article  Google Scholar 

  • Yang SL, Zhao QY, Belkin IM (2002) Temporal variation in the sediment load of the Yangtze River and the influences of human activities. J Hydrol 263(1–4):56–71

    Article  Google Scholar 

  • Yang GF, Chen ZY, Yu FL, Wang ZH, Zhao YW, Wang ZQ (2007) Sediment rating parameters and their implications: Yangtze River, China. Geomorphology 85(3–4):166–175

    Article  Google Scholar 

  • Yue TX, Song DJ, Du ZP, Wang W (2010) High-accuracy surface modelling and its application to DEM generation. Int J Remote Sens 31(8):2205–2226

    Article  Google Scholar 

  • Zahouani H, Vargiolu R, Loubet JL (1998) Fractal models of surface topography and contact mechanics. Math Comput Model 28(4–8):517–534

    Article  Google Scholar 

  • Zebker HA, Werner CL, Rosen PA, Hensley S (1994) Accuracy of topographic maps derived from ERS-1 interferometric radar. IEEE Trans Geosci Remote Sens 32(4):823–836

    Article  Google Scholar 

  • Zhou HW, Xie H (2003) Direct estimation of the fractal dimensions of a fracture surface of rock. Surf Rev Lett 10(05):751–762

    Article  Google Scholar 

  • Zhou QM, Liu XJ, Sun YZ (2006) Terrain complexity and uncertainties in grid-based digital terrain analysis. Int J Geogr Inf Sci 20(10):1137–1147

    Article  Google Scholar 

Download references

Acknowledgments

The China National Natural Science Foundation (Grant No. 51379155) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 96 kb)

Appendix

Appendix

  • Surface 3–1:

    $$ z(m)=19+ \cos \left(\frac{\pi }{400}\cdot y\right)+\left\{\begin{array}{l} \sin \left(\frac{\pi }{100}\cdot x\right)+ \cos \left(\frac{\pi }{100}\cdot x\right)+2 \sin \left(\frac{2\pi }{100}\cdot x\right)+2 \cos \left(\frac{2\pi }{100}\cdot x\right),0\le x<200;\hfill \\ {} \sin \left[\frac{\pi }{105}\cdot \left(x-200\right)\right]+ \cos \left[\frac{\pi }{105}\cdot \left(x-200\right)\right]+2 \sin \left[\frac{2\pi }{105}\cdot \left(x-200\right)\right]+2 \cos \left[\frac{2\pi }{105}\cdot \left(x-200\right)\right],200\le x<410;\hfill \\ {} \sin \left[\frac{\pi }{110}\cdot \left(x-410\right)\right]+ \cos \left[\frac{\pi }{110}\cdot \left(x-410\right)\right]+2 \sin \left[\frac{2\pi }{110}\cdot \left(x-410\right)\right]+2 \cos \left[\frac{2\pi }{110}\cdot \left(x-410\right)\right],410\le x<630;\hfill \\ {} \sin \left[\frac{\pi }{115}\cdot \left(x-630\right)\right]+ \cos \left[\frac{\pi }{115}\cdot \left(x-630\right)\right]+2 \sin \left[\frac{2\pi }{115}\cdot \left(x-630\right)\right]+2 \cos \left[\frac{2\pi }{115}\cdot \left(x-630\right)\right],630\le x<860;\hfill \\ {} \sin \left[\frac{\pi }{120}\cdot \left(x-860\right)\right]+ \cos \left[\frac{\pi }{120}\cdot \left(x-860\right)\right]+2 \sin \left[\frac{2\pi }{120}\cdot \left(x-860\right)\right]+2 \cos \left[\frac{2\pi }{120}\cdot \left(x-860\right)\right],860\le x<1100;\hfill \\ {} \sin \left[\frac{\pi }{125}\cdot \left(x-1100\right)\right]+ \cos \left[\frac{\pi }{125}\cdot \left(x-1100\right)\right]+2 \sin \left[\frac{2\pi }{125}\cdot \left(x-1100\right)\right]+2 \cos \left[\frac{2\pi }{125}\cdot \left(x-1100\right)\right],1100\le x<1350;\hfill \\ {} \sin \left[\frac{\pi }{130}\cdot \left(x-1350\right)\right]+ \cos \left[\frac{\pi }{130}\cdot \left(x-1350\right)\right]+2 \sin \left[\frac{2\pi }{130}\cdot \left(x-1350\right)\right]+2 \cos \left[\frac{2\pi }{130}\cdot \left(x-1350\right)\right],1350\le x<1610;\hfill \\ {} \sin \left[\frac{\pi }{135}\cdot \left(x-1610\right)\right]+ \cos \left[\frac{\pi }{135}\cdot \left(x-1610\right)\right]+2 \sin \left[\frac{2\pi }{135}\cdot \left(x-1610\right)\right]+2 \cos \left[\frac{2\pi }{135}\cdot \left(x-1610\right)\right],1610\le x<1880;\hfill \\ {} \sin \left[\frac{\pi }{60}\cdot \left(x-1880\right)\right]+ \cos \left[\frac{\pi }{60}\cdot \left(x-1880\right)\right]+2 \sin \left[\frac{2\pi }{60}\cdot \left(x-1880\right)\right]+2 \cos \left[\frac{2\pi }{60}\cdot \left(x-1880\right)\right],1880\le x<2000;\hfill \end{array}\right. $$
    (11)
  • Surface 3–2:

    $$ z(m)=19+ \cos \left(\frac{\pi }{400}\cdot y\right)+\left\{\begin{array}{l} \sin \left(\frac{\pi }{105}\cdot x\right)+ \cos \left(\frac{\pi }{105}\cdot x\right)+2 \sin \left(\frac{2\pi }{105}\cdot x\right)+2 \cos \left(\frac{2\pi }{105}\cdot x\right),0\le x<210;\hfill \\ {} \sin \left[\frac{\pi }{115}\cdot \left(x-210\right)\right]+ \cos \left[\frac{\pi }{115}\cdot \left(x-210\right)\right]+2 \sin \left[\frac{2\pi }{115}\cdot \left(x-210\right)\right]+2 \cos \left[\frac{2\pi }{115}\cdot \left(x-210\right)\right],210\le x<440;\hfill \\ {} \sin \left[\frac{\pi }{130}\cdot \left(x-440\right)\right]+ \cos \left[\frac{\pi }{130}\cdot \left(x-440\right)\right]+2 \sin \left[\frac{2\pi }{130}\cdot \left(x-440\right)\right]+2 \cos \left[\frac{2\pi }{130}\cdot \left(x-440\right)\right],440\le x<700;\hfill \\ {} \sin \left[\frac{\pi }{145}\cdot \left(x-700\right)\right]+ \cos \left[\frac{\pi }{145}\cdot \left(x-700\right)\right]+2 \sin \left[\frac{2\pi }{145}\cdot \left(x-700\right)\right]+2 \cos \left[\frac{2\pi }{145}\cdot \left(x-700\right)\right],700\le x<990;\hfill \\ {} \sin \left[\frac{\pi }{160}\cdot \left(x-990\right)\right]+ \cos \left[\frac{\pi }{160}\cdot \left(x-990\right)\right]+2 \sin \left[\frac{2\pi }{160}\cdot \left(x-990\right)\right]+2 \cos \left[\frac{2\pi }{160}\cdot \left(x-990\right)\right],990\le x<1310;\hfill \\ {} \sin \left[\frac{\pi }{170}\cdot \left(x-1310\right)\right]+ \cos \left[\frac{\pi }{170}\cdot \left(x-1310\right)\right]+2 \sin \left[\frac{2\pi }{170}\cdot \left(x-1310\right)\right]+2 \cos \left[\frac{2\pi }{170}\cdot \left(x-1310\right)\right],1310\le x<1650;\hfill \\ {} \sin \left[\frac{\pi }{175}\cdot \left(x-1650\right)\right]+ \cos \left[\frac{\pi }{175}\cdot \left(x-1650\right)\right]+2 \sin \left[\frac{2\pi }{175}\cdot \left(x-1650\right)\right]+2 \cos \left[\frac{2\pi }{175}\cdot \left(x-1650\right)\right],1650\le x<2000;\hfill \end{array}\right. $$
    (12)
  • Surface 3–3:

    $$ z(m)=19+ \cos \left(\frac{\pi }{400}\cdot y\right)+\left\{\begin{array}{l} \sin \left(\frac{\pi }{110}\cdot x\right)+ \cos \left(\frac{\pi }{110}\cdot x\right)+2 \sin \left(\frac{2\pi }{110}\cdot x\right)+2 \cos \left(\frac{2\pi }{110}\cdot x\right),0\le x<220;\hfill \\ {} \sin \left[\frac{\pi }{130}\cdot \left(x-220\right)\right]+ \cos \left[\frac{\pi }{130}\cdot \left(x-220\right)\right]+2 \sin \left[\frac{2\pi }{130}\cdot \left(x-220\right)\right]+2 \cos \left[\frac{2\pi }{130}\cdot \left(x-220\right)\right],220\le x<480;\hfill \\ {} \sin \left[\frac{\pi }{150}\cdot \left(x-480\right)\right]+ \cos \left[\frac{\pi }{150}\cdot \left(x-480\right)\right]+2 \sin \left[\frac{2\pi }{150}\cdot \left(x-480\right)\right]+2 \cos \left[\frac{2\pi }{150}\cdot \left(x-480\right)\right],480\le x<780;\hfill \\ {} \sin \left[\frac{\pi }{175}\cdot \left(x-780\right)\right]+ \cos \left[\frac{\pi }{175}\cdot \left(x-780\right)\right]+2 \sin \left[\frac{2\pi }{175}\cdot \left(x-780\right)\right]+2 \cos \left[\frac{2\pi }{175}\cdot \left(x-780\right)\right],780\le x<1130;\hfill \\ {} \sin \left[\frac{\pi }{200}\cdot \left(x-1130\right)\right]+ \cos \left[\frac{\pi }{200}\cdot \left(x-1130\right)\right]+2 \sin \left[\frac{2\pi }{200}\cdot \left(x-1130\right)\right]+2 \cos \left[\frac{2\pi }{200}\cdot \left(x-1130\right)\right],1130\le x<1530;\hfill \\ {} \sin \left[\frac{\pi }{235}\cdot \left(x-1530\right)\right]+ \cos \left[\frac{\pi }{235}\cdot \left(x-1530\right)\right]+2 \sin \left[\frac{2\pi }{235}\cdot \left(x-1530\right)\right]+2 \cos \left[\frac{2\pi }{235}\cdot \left(x-1530\right)\right],1530\le x<2000;\hfill \end{array}\right. $$
    (13)
  • Surface 3–4:

    $$ \begin{array}{l}z(m)=19+ \cos \left(\frac{\pi }{400}\cdot y\right)+\left\{\begin{array}{l} \sin \left(\frac{\pi }{115}\cdot x\right)+ \cos \left(\frac{\pi }{115}\cdot x\right)+2 \sin \left(\frac{2\pi }{115}\cdot x\right)+2 \cos \left(\frac{2\pi }{115}\cdot x\right),0\le x<230;\\ {} \sin \left[\frac{\pi }{135}\cdot \left(x-230\right)\right]+ \cos \left[\frac{\pi }{135}\cdot \left(x-230\right)\right]+2 \sin \left[\frac{2\pi }{135}\cdot \left(x-230\right)\right]+2 \cos \left[\frac{2\pi }{135}\cdot \left(x-230\right)\right],230\le x<500;\\ {} \sin \left[\frac{\pi }{155}\cdot \left(x-500\right)\right]+ \cos \left[\frac{\pi }{155}\cdot \left(x-500\right)\right]+2 \sin \left[\frac{2\pi }{155}\cdot \left(x-500\right)\right]+2 \cos \left[\frac{2\pi }{155}\cdot \left(x-500\right)\right],500\le x<810;\\ {} \sin \left[\frac{\pi }{180}\cdot \left(x-810\right)\right]+ \cos \left[\frac{\pi }{180}\cdot \left(x-810\right)\right]+2 \sin \left[\frac{2\pi }{180}\cdot \left(x-810\right)\right]+2 \cos \left[\frac{2\pi }{180}\cdot \left(x-810\right)\right],810\le x<1170;\\ {} \sin \left[\frac{\pi }{155}\cdot \left(x-1170\right)\right]+ \cos \left[\frac{\pi }{155}\cdot \left(x-1170\right)\right]+2 \sin \left[\frac{2\pi }{155}\cdot \left(x-1170\right)\right]+2 \cos \left[\frac{2\pi }{155}\cdot \left(x-1170\right)\right],1170\le x<1480;\\ {} \sin \left[\frac{\pi }{135}\cdot \left(x-1480\right)\right]+ \cos \left[\frac{\pi }{135}\cdot \left(x-1480\right)\right]+2 \sin \left[\frac{2\pi }{135}\cdot \left(x-1480\right)\right]+2 \cos \left[\frac{2\pi }{135}\cdot \left(x-1480\right)\right],1480\le x<1750;\\ {} \sin \left[\frac{\pi }{125}\cdot \left(x-1750\right)\right]+ \cos \left[\frac{\pi }{125}\cdot \left(x-1750\right)\right]+2 \sin \left[\frac{2\pi }{125}\cdot \left(x-1750\right)\right]+2 \cos \left[\frac{2\pi }{125}\cdot \left(x-1750\right)\right],1750\le x<2000;\end{array}\right.\\ {}\end{array} $$
    (14)
  • Surface 3–5:

    $$ z(m)=19+ \cos \left(\frac{\pi }{400}\cdot y\right)+\left\{\begin{array}{l} \sin \left(\frac{\pi }{160}\cdot x\right)+ \cos \left(\frac{\pi }{160}\cdot x\right)+2 \sin \left(\frac{2\pi }{160}\cdot x\right)+2 \cos \left(\frac{2\pi }{160}\cdot x\right),0\le x<320;\hfill \\ {} \sin \left[\frac{\pi }{180}\cdot \left(x-320\right)\right]+ \cos \left[\frac{\pi }{180}\cdot \left(x-320\right)\right]+2 \sin \left[\frac{2\pi }{180}\cdot \left(x-320\right)\right]+2 \cos \left[\frac{2\pi }{180}\cdot \left(x-320\right)\right],320\le x<680;\hfill \\ {} \sin \left[\frac{\pi }{200}\cdot \left(x-680\right)\right]+ \cos \left[\frac{\pi }{200}\cdot \left(x-680\right)\right]+2 \sin \left[\frac{2\pi }{200}\cdot \left(x-680\right)\right]+2 \cos \left[\frac{2\pi }{200}\cdot \left(x-680\right)\right],680\le x<1080;\hfill \\ {} \sin \left[\frac{\pi }{220}\cdot \left(x-1080\right)\right]+ \cos \left[\frac{\pi }{220}\cdot \left(x-1080\right)\right]+2 \sin \left[\frac{2\pi }{220}\cdot \left(x-1080\right)\right]+2 \cos \left[\frac{2\pi }{220}\cdot \left(x-1080\right)\right],1080\le x<1520;\hfill \\ {} \sin \left[\frac{\pi }{240}\cdot \left(x-1520\right)\right]+ \cos \left[\frac{\pi }{240}\cdot \left(x-1520\right)\right]+2 \sin \left[\frac{2\pi }{240}\cdot \left(x-1520\right)\right]+2 \cos \left[\frac{2\pi }{240}\cdot \left(x-1520\right)\right],1520\le x<2000;\hfill \end{array}\right. $$
    (15)
  • Surface 3–6:

    $$ z(m)=19+ \cos \left(\frac{\pi }{400}\cdot y\right)+\left\{\begin{array}{l} \sin \left(\frac{\pi }{220}\cdot x\right)+ \cos \left(\frac{\pi }{220}\cdot x\right)+2 \sin \left(\frac{2\pi }{220}\cdot x\right)+2 \cos \left(\frac{2\pi }{220}\cdot x\right),0\le x<440;\hfill \\ {} \sin \left[\frac{\pi }{240}\cdot \left(x-440\right)\right]+ \cos \left[\frac{\pi }{240}\cdot \left(x-440\right)\right]+2 \sin \left[\frac{2\pi }{240}\cdot \left(x-440\right)\right]+2 \cos \left[\frac{2\pi }{240}\cdot \left(x-440\right)\right],440\le x<920;\hfill \\ {} \sin \left[\frac{\pi }{260}\cdot \left(x-920\right)\right]+ \cos \left[\frac{\pi }{260}\cdot \left(x-920\right)\right]+2 \sin \left[\frac{2\pi }{260}\cdot \left(x-920\right)\right]+2 \cos \left[\frac{2\pi }{260}\cdot \left(x-920\right)\right],920\le x<1440;\hfill \\ {} \sin \left[\frac{\pi }{280}\cdot \left(x-1440\right)\right]+ \cos \left[\frac{\pi }{280}\cdot \left(x-1440\right)\right]+2 \sin \left[\frac{2\pi }{280}\cdot \left(x-1440\right)\right]+2 \cos \left[\frac{2\pi }{280}\cdot \left(x-1440\right)\right],1440\le x<2000;\hfill \end{array}\right. $$
    (16)
  • Surface 3–7:

    $$ z(m)=19+ \cos \left(\frac{\pi }{400}\cdot y\right)+\left\{\begin{array}{l} \sin \left(\frac{\pi }{275}\cdot x\right)+ \cos \left(\frac{\pi }{275}\cdot x\right)+2 \sin \left(\frac{2\pi }{275}\cdot x\right)+2 \cos \left(\frac{2\pi }{275}\cdot x\right),0\le x<550;\hfill \\ {} \sin \left[\frac{\pi }{325}\cdot \left(x-550\right)\right]+ \cos \left[\frac{\pi }{325}\cdot \left(x-550\right)\right]+2 \sin \left[\frac{2\pi }{325}\cdot \left(x-550\right)\right]+2 \cos \left[\frac{2\pi }{325}\cdot \left(x-550\right)\right],550\le x<1200;\hfill \\ {} \sin \left[\frac{\pi }{400}\cdot \left(x-1200\right)\right]+ \cos \left[\frac{\pi }{400}\cdot \left(x-1200\right)\right]+2 \sin \left[\frac{2\pi }{400}\cdot \left(x-1200\right)\right]+2 \cos \left[\frac{2\pi }{400}\cdot \left(x-1200\right)\right],1200\le x<2000;\hfill \end{array}\right. $$
    (17)
  • Surface 3–8:

    $$ z(m)=19+ \cos \left(\frac{\pi }{400}\cdot y\right)+\left\{\begin{array}{l} \sin \left(\frac{\pi }{105}\cdot x\right)+ \cos \left(\frac{\pi }{105}\cdot x\right)+2 \sin \left(\frac{2\pi }{105}\cdot x\right)+2 \cos \left(\frac{2\pi }{105}\cdot x\right),0\le x<210;\hfill \\ {} \sin \left[\frac{\pi }{120}\cdot \left(x-210\right)\right]+ \cos \left[\frac{\pi }{120}\cdot \left(x-210\right)\right]+2 \sin \left[\frac{2\pi }{120}\cdot \left(x-210\right)\right]+2 \cos \left[\frac{2\pi }{120}\cdot \left(x-210\right)\right],210\le x<450;\hfill \\ {} \sin \left[\frac{\pi }{130}\cdot \left(x-450\right)\right]+ \cos \left[\frac{\pi }{130}\cdot \left(x-450\right)\right]+2 \sin \left[\frac{2\pi }{130}\cdot \left(x-450\right)\right]+2 \cos \left[\frac{2\pi }{130}\cdot \left(x-450\right)\right],450\le x<710;\hfill \\ {} \sin \left[\frac{\pi }{140}\cdot \left(x-710\right)\right]+ \cos \left[\frac{\pi }{140}\cdot \left(x-710\right)\right]+2 \sin \left[\frac{2\pi }{140}\cdot \left(x-710\right)\right]+2 \cos \left[\frac{2\pi }{140}\cdot \left(x-710\right)\right],710\le x<990;\hfill \\ {} \sin \left[\frac{\pi }{135}\cdot \left(x-990\right)\right]+ \cos \left[\frac{\pi }{135}\cdot \left(x-990\right)\right]+2 \sin \left[\frac{2\pi }{135}\cdot \left(x-990\right)\right]+2 \cos \left[\frac{2\pi }{135}\cdot \left(x-990\right)\right],990\le x<1260;\hfill \\ {} \sin \left[\frac{\pi }{125}\cdot \left(x-1260\right)\right]+ \cos \left[\frac{\pi }{125}\cdot \left(x-1260\right)\right]+2 \sin \left[\frac{2\pi }{125}\cdot \left(x-1260\right)\right]+2 \cos \left[\frac{2\pi }{125}\cdot \left(x-1260\right)\right],1260\le x<1510;\hfill \\ {} \sin \left[\frac{\pi }{115}\cdot \left(x-1510\right)\right]+ \cos \left[\frac{\pi }{115}\cdot \left(x-1510\right)\right]+2 \sin \left[\frac{2\pi }{115}\cdot \left(x-1510\right)\right]+2 \cos \left[\frac{2\pi }{115}\cdot \left(x-1510\right)\right],1510\le x<1740;\hfill \\ {} \sin \left[\frac{\pi }{130}\cdot \left(x-1740\right)\right]+ \cos \left[\frac{\pi }{130}\cdot \left(x-1740\right)\right]+2 \sin \left[\frac{2\pi }{130}\cdot \left(x-1740\right)\right]+2 \cos \left[\frac{2\pi }{130}\cdot \left(x-1740\right)\right],1740\le x<2000\hfill \end{array}\right. $$
    (18)
  • Surface 3–9:

    $$ z(m)=19+ \cos \left(\frac{\pi }{400}\cdot y\right)+\left\{\begin{array}{l} \sin \left(\frac{\pi }{120}\cdot x\right)+ \cos \left(\frac{\pi }{120}\cdot x\right)+2 \sin \left(\frac{2\pi }{120}\cdot x\right)+2 \cos \left(\frac{2\pi }{120}\cdot x\right),0\le x<240;\hfill \\ {} \sin \left[\frac{\pi }{140}\cdot \left(x-240\right)\right]+ \cos \left[\frac{\pi }{140}\cdot \left(x-240\right)\right]+2 \sin \left[\frac{2\pi }{140}\cdot \left(x-240\right)\right]+2 \cos \left[\frac{2\pi }{140}\cdot \left(x-240\right)\right],240\le x<520;\hfill \\ {} \sin \left[\frac{\pi }{160}\cdot \left(x-520\right)\right]+ \cos \left[\frac{\pi }{160}\cdot \left(x-520\right)\right]+2 \sin \left[\frac{2\pi }{160}\cdot \left(x-520\right)\right]+2 \cos \left[\frac{2\pi }{160}\cdot \left(x-520\right)\right],520\le x<840;\hfill \\ {} \sin \left[\frac{\pi }{180}\cdot \left(x-840\right)\right]+ \cos \left[\frac{\pi }{180}\cdot \left(x-840\right)\right]+2 \sin \left[\frac{2\pi }{180}\cdot \left(x-840\right)\right]+2 \cos \left[\frac{2\pi }{180}\cdot \left(x-840\right)\right],840\le x<1200;\hfill \\ {} \sin \left[\frac{\pi }{190}\cdot \left(x-1200\right)\right]+ \cos \left[\frac{\pi }{190}\cdot \left(x-1200\right)\right]+2 \sin \left[\frac{2\pi }{190}\cdot \left(x-1200\right)\right]+2 \cos \left[\frac{2\pi }{190}\cdot \left(x-1200\right)\right],1200\le x<1580;\hfill \\ {} \sin \left[\frac{\pi }{210}\cdot \left(x-1580\right)\right]+ \cos \left[\frac{\pi }{210}\cdot \left(x-1580\right)\right]+2 \sin \left[\frac{2\pi }{210}\cdot \left(x-1580\right)\right]+2 \cos \left[\frac{2\pi }{210}\cdot \left(x-1580\right)\right],1580\le x<2000\hfill \end{array}\right. $$
    (19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yuan, Y. & Qi, M. Impact of terrain complexity on the accuracy of calculations of river channel storage volume derived from measurements of underwater topography. Arab J Geosci 8, 9149–9168 (2015). https://doi.org/10.1007/s12517-015-1857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1857-9

Keywords

Navigation