Skip to main content
Log in

Differential evolution adaptive metropolis sampling method to provide model uncertainty and model selection criteria to determine optimal model for Rayleigh wave dispersion

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The near-surface S-wave velocity is important tool for environmental studies. This parameter can be derived by inverting of Rayleigh wave dispersion. Inversion of Rayleigh wave dispersion has a nonunique solution. Thus, solving inverse problems is not only done to find the fittest model but also to characterize the uncertainty of the model result. In this paper, we applied and tested a Bayesian inversion method using a developed differential evolution adaptive metropolis (DREAM(ZS)) approach to provide posterior distribution of model parameters (PDMPs). This method consists of Markov chain Monte Carlo (MCMC) simulation method which rapidly estimates the PDMP. After obtaining the resulted posterior, we could estimate representative model (such as mean, mode, median, covariance, and percentile model, the maximum posterior model, and uncertainty model), the probability distributions for individual parameters, and the dispersion curve uncertainty of these models. For inversion of real data, the number of model parameters or the layer number (degrees of freedom (DoF)) which can be propagated by Rayleigh wave is unknown. Therefore, this layer number is needed to accurately estimate subsurface model parameters. For this problem, membership function of fuzzy (MFF) criteria is proposed and applied to the model selection criteria and the various model selection criteria such as the Bayesian information criteria (BIC), the Akaike’s information criterion (AIC), the generalized cross-validation (GCV), the Kullback information criterion (KIC), the finite prediction error (FPE), and information complexity (ICOMP) are compared to the proposed method for selection of the optimal model. The DREAM(ZS) method as well as the seven model selection criteria methods to select the optimal model are used to investigate the influence of noise on Rayleigh wave dispersion on the uncertainty of model parameter values for three synthetics, such as model with a linear velocity increase, model with a low-velocity layer (LVL), and model with a high-velocity layer (HVL). Our results demonstrated that the DREAM(ZS) method is effective to estimate the S-wave velocity and thickness of each layer and to quantify the uncertainty on the estimates, while all the model selection criteria approaches are able to determine the optimal model from different number of layers for noise-free and slightly noisy data, and only the MFF criteria is able to obtain the optimal model for noise-free and noisy data. The optimal model is typically close to the true model. Therefore, inverting Rayleigh wave dispersion using both approaches can produce the best model. We also applied these methods to Rayleigh wave dispersion data collected from the Ljubljana site in Slovenia. We compare our results with those estimated from the number of blow count in the standard penetrating test (N-SPT) data; it shows a good correlation toward each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abido MA (2006) Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans Evol Comput 10:315–329. doi:10.1109/TEVC.2005.857073

    Article  Google Scholar 

  • Akaike H (1970) Statistical predictor identification. Ann Inst Stat Math 22:203–217. doi:10.1007/BF02506337

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Akin MK, Kramer SL, Topal T (2011) Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey). Eng Geol 119:1–17. doi:10.1016/j.enggeo.2011.01.007

    Article  Google Scholar 

  • Albarello D, Cesi C, Eulilli V, Guerrini G, Lunedei E, Paolucci E, Pileggi D, Puzzilli LM (2012) The contribution of the ambient vibration prospecting in seismic microzoning: an example from the area damaged by the April 6, 2009 L’Aquila (Italy) earthquake. Bollettino di Geofisica Teorica ed Applicata

  • Andrus RD, Stokoe KH, Hsein Juang C (2004) Guide for shear-wave-based liquefaction potential evaluation. Earthquake Spectra 20:285–308. doi:10.1193/1.1715106

    Article  Google Scholar 

  • Bikowski J, van der Kruk J, Huisman JA, Vereecken H, Vrugt JA (2011) Explicit consideration of measurement uncertainty during Bayesian inversion of dispersive GPR data, in: 2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR). Presented at the 2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), pp. 1–5. doi:10.1109/IWAGPR.2011.5963840

  • Bikowski J, Huisman JA, Vrugt JA, Vereecken H, van der Kruck J (2012) Integrated analysis of waveguide dispersed GPR pulses using deterministic and Bayesian inversion methods. Near Surf Geophys 10:641–652. doi:10.3997/1873-0604.2012041

    Google Scholar 

  • Box GEP, Tiao GC (1992) Bayesian inference in statistical analysis. Wiley, New York

  • Bozdogan H (2000) Akaike’s information criterion and recent developments in information complexity. J Math Psychol 44:62–91. doi:10.1006/jmps.1999.1277

    Article  Google Scholar 

  • Bozdogan H, Haughton DMA (1998) Informational complexity criteria for regression models. Comput Stat Data Anal 28:51–76. doi:10.1016/S0167-9473(98)00025-5

    Article  Google Scholar 

  • Brocher TM (2005) Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am 95:2081–2092. doi:10.1785/0120050077

    Article  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Google Scholar 

  • Brown V, Hoversten M, Key K, Chen J (2012) Resolution of reservoir scale electrical anisotropy from marine CSEM data. Geophysics 77:E147–E158. doi:10.1190/geo2011-0159.1

    Article  Google Scholar 

  • Burnham KP, Anderson D (2002) Model selection and multi-model inference, 2nd edn. Springer, USA

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. doi:10.1177/0049124104268644

    Article  Google Scholar 

  • Cadet H, Savvaidis A (2011) Comparative application of dispersion curve inversion strategies. Case study of noise arrays in the Euroseistest site, Greece. Near Surf Geophys 9:571–584. doi:10.3997/1873-0604.2011043

    Google Scholar 

  • Chen J, Hoversten M (2012) Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields. Geophysics 77:R65–R80

    Article  Google Scholar 

  • Chen J, Kemna A, Hubbard SS (2008) A comparison between Gauss-Newton and Markov-chain Monte Carlo-based methods for inverting spectral induced-polarization data for Cole-Cole parameters. Geophysics 73:F247–F259. doi:10.1190/1.2976115

    Article  Google Scholar 

  • Chen J, Hoversten GM, Key K, Nordquist G, Cumming W (2012) Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site. Geophysics 77:E265. doi:10.1190/geo2011-0430.1

    Article  Google Scholar 

  • Coccia S, Del Gaudio V, Venisti N, Wasowski J (2010) Application of Refraction Microtremor (ReMi) technique for determination of 1-D shear wave velocity in a landslide area. J Appl Geophys 71:71–89. doi:10.1016/j.jappgeo.2010.05.001

    Article  Google Scholar 

  • Comina C, Foti S, Socco LV (2012) Inversion uncertainty in surface wave analysis. Am Soc Civil Eng. doi:10.1061/9780784412121.280

  • Dal Moro G (2010) Insights on surface wave dispersion and HVSR: joint analysis via Pareto optimality. J Appl Geophys 72:129–140. doi:10.1016/j.jappgeo.2010.08.004

    Article  Google Scholar 

  • Dal Moro G, Ferigo F (2011) Joint analysis of Rayleigh- and Love-wave dispersion: issues, criteria and improvements. J Appl Geophys 75:573–589. doi:10.1016/j.jappgeo.2011.09.008

    Article  Google Scholar 

  • Dal Moro G, Pipan M, Gabrielli (2007) Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J Appl Geophys 61:39–55

    Article  Google Scholar 

  • Di Giulio G, Savvaidis A, Theodoulidis N, Ohrnberger M, Endrun B, Wathelet M, Cornou C, Renalier F, Bard PY (2010) Inversion of surface wave dispersion at European strong motion sites using a multi-model parameterization and an information-theoretic approach. Presented at the 14 th ECEE, Ohrid

  • Djuric PM (1996) A model selection rule for sinusoids in white Gaussian noise. IEEE Trans Signal Process 44:1744–1751. doi:10.1109/78.510621

    Article  Google Scholar 

  • Djuric PM (1998) Asymptotic MAP criteria for model selection. IEEE Trans Signal Process 46:2726–2735. doi:10.1109/78.720374

    Article  Google Scholar 

  • Duputel Z, Rivera L, Fukahata Y, Kanamori H (2012) Uncertainty estimations for seismic source inversions. Geophys J Int 190:1243–1256. doi:10.1111/j.1365-246X.2012.05554.x

    Article  Google Scholar 

  • Feng S, Sugiyama T, Yamanaka H (2005) Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations. Explor Geophys 36:26–33

    Article  Google Scholar 

  • Fernández Martínez JL, Fernández Muñiz MZ, Tompkins MJ (2012) On the topography of the cost functional in linear and nonlinear inverse problems. Geophysics 77:W1–W15. doi:10.1190/geo2011-0341.1

    Article  Google Scholar 

  • Foti S, Boiero D, Comina C, Socco LV (2008) Consequences of Solution Non-Uniqueness in Surface Wave Tests for Seismic Response Studies, in: Geotechnical Earthquake Engineering and Soil Dynamics IV. American Society of Civil Engineers, pp. 1–10

  • Foti S, Comina C, Boiero D, Socco LV (2009) Non-uniqueness in surface-wave inversion and consequences on seismic site response analyses. Soil Dyn Earthq Eng 29:982–993. doi:10.1016/j.soildyn.2008.11.004

    Article  Google Scholar 

  • Foti S, Socco LV, Comina C (2012) Inversion uncertainty in surface wave analysis. In: GeoCongress 2012. American Society of Civil Engineers, pp. 2736–2745

  • Gallagher K, Stephenson J, Brown R, Holmes C, Fitzgerald P (2005) Low temperature thermochronology and modeling strategies for multiple samples 1: vertical profiles. Earth Planet Sci Lett 237:193–208. doi:10.1016/j.epsl.2005.06.025

    Article  Google Scholar 

  • Gallagher K, Charvin K, Nielsen S, Sambridge M, Stephenson J (2009) Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. Mar Pet Geol 26:525–535. doi:10.1016/j.marpetgeo.2009.01.003

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from Iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Haario H, Laine M, Mira A, Saksman E (2006) DRAM: efficient adaptive MCMC. Stat Comput 16:339–354. doi:10.1007/s11222-006-9438-0

    Article  Google Scholar 

  • Huisman JA, Ring J, Vrugt JA, Vereecken H (2010) Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion. J Hydrol 380:62–73

    Article  Google Scholar 

  • Jackson DD (1972) Interpretation of inaccurate, insufficient and inconsistent data. Geophys J R Astron Soc 28:97–109. doi:10.1111/j.1365-246X.1972.tb06115.x

    Article  Google Scholar 

  • Jackson DD (1973) Marginal solutions to quasi-linear inverse problems in geophysics: the edgehog method. Geophys J R Astron Soc 35:121–136. doi:10.1111/j.1365-246X.1973.tb02418.x

    Article  Google Scholar 

  • Jongmans D, Bièvre G, Renalier F, Schwartz S, Beaurez N, Orengo Y (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng Geol 109:45–56. doi:10.1016/j.enggeo.2008.10.005

    Article  Google Scholar 

  • Kanli AI, Kang T-S, Pinar A, Tildy P, Prónay Z (2008) A systematic geophysical approach for site response of the Dinar Region, Southwestern Turkey. J Earthq Eng 12:165–174. doi:10.1080/13632460802013966

    Article  Google Scholar 

  • Kulesh M, Holschneider M, Diallo MS (2008) Geophysical wavelet library: applications of the continuous wavelet transform to the polarization and dispersion analysis of signals. Comput Geosci 34:1732–1752. doi:10.1016/j.cageo.2008.03.004

    Article  Google Scholar 

  • Lai CG (1999) Simultaneous inversion of rayleigh phase velocity and attenuation for near-surface site characterization. PhD Dissertation, Department of Civil and Environmental Engineering, Georgia Institute ofTechnology; 1998

  • Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and high-performance computing. Water Resour Res. doi:10.1029/2011WR010608

  • Lee SH (1990) Regression models of shear wave velocities in Taipei basin. J Chin Inst Eng 13:519–532. doi:10.1080/02533839.1990.9677284

    Article  Google Scholar 

  • Lu D, Ye M, Neuman SP (2011) Dependence of Bayesian model selection criteria and fisher information matrix on sample size. Math Geosci 43:971–993. doi:10.1007/s11004-011-9359-0

    Article  Google Scholar 

  • Luo Y, Xia J, Miller RD, Xu Y, Liu J, Liu Q (2009) Rayleigh-wave mode separation by high-resolution linear Radon transform. Geophys J Int 179:254–264. doi:10.1111/j.1365-246X.2009.04277.x

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087. doi:10.1063/1.1699114

    Article  Google Scholar 

  • Meyer PD, Ye M, Neuman SP (2007) On model selection criteria in multimodel analysis. AGU Fall Meeting Abstracts 1, 07

  • Morales-Casique E, Neuman SP, Vesselinov VV (2010) Maximum likelihood Bayesian averaging of airflow models in unsaturated fractured tuff using Occam and variance windows. Stoch Environ Res Risk Assess 24:863–880. doi:10.1007/s00477-010-0383-2

    Article  Google Scholar 

  • Pei D, Louie JN, Pullammanappallil SK (2008) Improvements on computation of phase velocities of Rayleigh waves based on the generalized R/T coefficient method. Bull Seismol Soc Am 98:280–287. doi:10.1785/0120070057

    Article  Google Scholar 

  • Picozzi M, Strollo A, Parolai S, Durukal E, Özel O, Karabulut S, Zschau J, Erdik M (2009) Site characterization by seismic noise in Istanbul, Turkey. Soil Dyn Earthq Eng 29:469–482. doi:10.1016/j.soildyn.2008.05.007

    Article  Google Scholar 

  • Renalier F, Jongmans D, Savvaidis A, Wathelet M, Endrun B, Cornou C (2010) Influence of parameterization on inversion of surface wave dispersion curves and definition of an inversion strategy for sites with a strong V-S contrast. Geophysics 75:B197–B209. doi:10.1190/1.3506556

    Article  Google Scholar 

  • Rosenblad BL, Bailey J, Csontos R, Van Arsdale R (2010) Shear wave velocities of Mississippi embayment soils from low frequency surface wave measurements. Soil Dyn Earthq Eng 30:691–701. doi:10.1016/j.soildyn.2010.02.010

    Article  Google Scholar 

  • Rošer J, Gosar A (2010) Determination of VS30 for seismic ground classification in the Ljubljana area, Slovenia. Acto Geotechnica Slovenia 7:61–76

    Google Scholar 

  • Sambridge M (2001) Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm. Inverse Probl 17:387–403. doi:10.1088/0266-5611/17/3/302

    Article  Google Scholar 

  • Sambridge M, Gallagher K, Jackson A, Rickwood P (2006) Trans-dimensional inverse problems, model comparison and the evidence. Geophys J Int 167:528–542. doi:10.1111/j.1365-246X.2006.03155.x

    Article  Google Scholar 

  • Scharnagl B, Vrugt JA, Vereecken H, Herbst M (2011) Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrol Earth Syst Sci 15:3043–3059. doi:10.5194/hess-15-3043-2011

    Article  Google Scholar 

  • Schoups G, Vrugt JA (2010) A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resour Res 46:1–17. doi:10.1029/2009WR008933

    Google Scholar 

  • Sharma SP (2012) VFSARES-a very fast simulated annealing FORTRAN program for interpretation of 1-D DC resistivity sounding data from various electrode arrays. Comput Geosci 42:177–188. doi:10.1016/j.cageo.2011.08.029

    Article  Google Scholar 

  • Socco LV, Boiero D (2008) Improved Monte Carlo inversion of surface wave data. Geophys Prospect 56:357–371. doi:10.1111/j.1365-2478.2007.00678.x

    Article  Google Scholar 

  • Socco LV, Boiero D, Foti S, Piatti C (2010a) Chapter 4: advances in surface-wave and body-wave integration. In: Miller RD, Bradford JH, Holliger K (eds) Advances in near-surface seismology and ground-penetrating Radar. Society of Exploration Geophysicists, American Geophysical Union, Environmental and Engineering Geophysical Society, pp. 55–73

  • Socco LV, Foti S, Boiero D (2010b) Surface-wave analysis for building near-surface velocity models— established approaches and new perspectives. Geophysics 75:A83–A102. doi:10.1190/1.3479491

    Article  Google Scholar 

  • Song X, Gu H, Zhang X, Liu J (2008) Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves. Comput Geosci 34:611–624. doi:10.1016/j.cageo.2007.05.019

    Article  Google Scholar 

  • Song X, Tang L, Lv X, Fang H, Gu H (2012) Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J Appl Geophys 84:1–13. doi:10.1016/j.jappgeo.2012.05.011

    Article  Google Scholar 

  • Sungkono (2011) Inversi terpisah dan simultan dispersi gelombang Rayleigh dan horizontal-to-vertical spectral ratio menggunakan algoritma genetik. Institut Teknologi Sepuluh Nopember, Surabaya

    Google Scholar 

  • Sungkono, Santosa BJ (2011) Determine of Rayleigh wave dispersion using FGRT method. Presented at the International Conference on Mathematics and Sciences (ICOMSc), Surabaya, pp. OP091–OP097

  • Ter Braak CJ (2006) A Markov Chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat Comput 16:239–249. doi:10.1007/s11222-006-8769-1

    Article  Google Scholar 

  • Ter Braak CJ, Vrugt JA (2008) Differential Evolution Markov Chain with snooker updater and fewer chains. Stat Comput 18:435–446. doi:10.1007/s11222-008-9104-9

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39:1201. doi:10.1029/2002WR001642

    Google Scholar 

  • Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res 44:W00B09. doi:10.1029/2007WR006720

    Google Scholar 

  • Vrugt JA, ter Braak CJF, Diks CGH, Robinson BA, Hyman JM, Higdon D (2009) Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10:273–290

  • Wahba G (1990) Spline models for observational data. Fourth. ed. SIAM, Philadelphia, PA

  • Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. J Seismol 12:1–19. doi:10.1007/s10950-007-9067-x

    Article  Google Scholar 

  • Wellmer F-W (1998) Statistical evaluations in exploration for mineral deposits. 1st ed. Springer Berlin Heidelberg, Berlin

  • Xia J, Miller RD, Park CB (1999) Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64:691–700. doi:10.1190/1.1444578

    Article  Google Scholar 

  • Xia J, Miller RD, Park CB, Tian G (2002) Determining Q of near-surface materials from Rayleigh waves. J Appl Geophys 51:121–129. doi:10.1016/S0926-9851(02)00228-8

    Article  Google Scholar 

  • Xia J, Xu Y, Miller RD, Ivanov J (2012) Estimation of near-surface quality factors by constrained inversion of Rayleigh-wave attenuation coefficients. J Appl Geophys 82:137–144. doi:10.1016/j.jappgeo.2012.03.003

    Article  Google Scholar 

  • Ye M, Meyer PD, Neuman SP (2008) On model selection criteria in multimodel analysis. Water Resour Res 44:W03428. doi:10.1029/2008WR006803

    Google Scholar 

  • Yunmin C, Han K, Ren-peng C (2005) Correlation of shear wave velocity with liquefaction resistance based on laboratory tests. Soil Dyn Earthq Eng 25:461–469. doi:10.1016/j.soildyn.2005.03.003

    Article  Google Scholar 

  • Zhang SX, Chan LS (2003) Possible effects of misidentified mode number on Rayleigh wave inversion. J Appl Geophys 53:17–29. doi:10.1016/S0926-9851(03)00014-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their detailed comments and suggestions for improvement on this paper. The authors are indebted to Dr. Janez Rošer at University of Ljubljana for his permission to use seismic data from field test. The DREAM(ZS) method used in this study was developed by Dr. Jasper A. Vrugt (jasper@uci.edu), and it is available upon request. First author has supported by the Directorate General of the Higher Education of the Republic of Indonesia (DIKTI) through Unggulan Scholarship (Beasiswa Unggulan) Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungkono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sungkono, Santosa, B.J. Differential evolution adaptive metropolis sampling method to provide model uncertainty and model selection criteria to determine optimal model for Rayleigh wave dispersion. Arab J Geosci 8, 7003–7023 (2015). https://doi.org/10.1007/s12517-014-1726-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1726-y

Keywords

Navigation