Skip to main content
Log in

Early Cambrian high-temperature dolomite of the Rizu Series in the Jalal-Abad iron ore deposit, Central Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Early Cambrian dolomites associated with siltstone, volcanic, and volcaniclastic rocks are the host rocks of the Jalal-Abad iron deposit. Five types of dolomite are distinguished by petrographic studies; fine to medium crystalline, planar dolomites (Rd1, Rd2), medium to coarse crystalline (Rd3), cloudy, subhedral to euhedral dolomite cements (Cd1), and coarse to very coarse saddle dolomite cements (Cd2). The Rd1-type dolomites formed in replacement stages, while Rd2 and Rd3 dolomites are formed during the early diagenetic stage. Cd1- and Cd2-type dolomites were formed by recrystallization during hydrothermal processes. Cd1 and Cd2 dolomite is mainly associated with different types of iron oxide, quartz, and sulfide minerals. Investigations of fluid inclusions in saddle dolomites show homogenization temperatures from 160 to 260 °C, with a mean of 215 °C, and salinities between 32.1 and 38, with an average of 35.9 wt% NaCl equiv. The δ 13C (PDB) compositions of the Rd1, Rd2, and Rd3 dolomites fall in the range of −5.30 to −2.97 and δ 18O (PDB) values of dolomite vary between −9.54 and −8.58. The δ 13C (PDB) compositions of Cd1 and Cd2 dolomites range from −11.00 to −4.17 and their δ 18O (PDB) values from −16.80 to −8.89. The presence of volcanic and volcaniclastic rocks in the dolomitic sequences and crosscutting of dolomite sequences by intrusive bodies indicate magmatic activity as the heat source of high-temperature dolomitization. Based on the compiled data, we argue that high-temperature dolomitization was caused by hydrothermal fluids which migrated through faults and fractures during the Early Cambrian and, probably, later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Aasm I (2003) Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin. J Geochem Explor 78–79:9–15

    Article  Google Scholar 

  • Allen JR, Wiggins WD (1993) Dolomite reservoir geochemical techniques for evaluation, origin and distribution. AAPG Bull. Course Note Series 36:129p

  • Barnaby RJ, Read JF (1992) Dolomitization of a carbonate platform during late burial: Lower to Middle Cambrian Shady Dolomite, Virginia Appalachians. J Sediment Petrol 62:1023–1043

    Google Scholar 

  • Bazargani-Guilani K, Faramarzi M, Nekouvaght- Tak MA (2010) Multistage dolomitization in cretaceous carbonates of the East Shahmirzad area, North Semnan, Central Alborz, Iran. Carbonate Evaporite 25:177–191

    Article  Google Scholar 

  • Behrens EW, Land LS (1972) Subtidal Holocene dolomite, Baffin Bay, Texas. J Sediment Petrol 42:155–161

    Google Scholar 

  • Berberian M (2005) The 2003 Bam urban earthquake: predictable seismotectonic pattern along the western margin of the rigid Lut block, southeast Iran. Earthquake Spectra 21(S1):S35–S99

    Article  Google Scholar 

  • Berberian M, King G (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:163–183

    Google Scholar 

  • Bonyadi Z, Davidson G, Mehrabi B, Meffre S, Ghazban F (2011) Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: insights from Paragenesis and geochemistry. Chem Geol 281:253–269

    Article  Google Scholar 

  • Borumandi H (1973) Petrographische und lagerstiitten knndliche Untersuchungen der Esfordi Formation zwischen Mishdovan und Kushk bei Bafq (Central Iran). PhD Thesis, RheinischWestphalischen Technischen HochschuIe, Aachen, 174 p

  • Brand U, Veizer J (1980) Chemical diagenesis of a multi component carbonate system. Trace elements. J Sediment Petrol 50:1219–1236

    Google Scholar 

  • Budd DA (1997) Cenozoic dolomites of carbonate is lands: their attributes and origin. Earth Sci Rev 42:1–47

    Article  Google Scholar 

  • Carballo JD, Land LS, Miser DE (1987) Holocene dolomitization of supratidal sediments by active tidal pumping, Sugar loaf Key Florid. J Sediment Petrol 57:153–165

    Google Scholar 

  • Chen D, Qing H, Yang C (2004) Multi stage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology 51:1029–1051

    Article  Google Scholar 

  • Davoudzadeh M, Lensch G, Weber-Diefenbach K (1986) Contribution to the paleogeography, stratigraphy and tectonics of the Infracambrian and lower Paleozoic of Iran: Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen 172:245–269

    Google Scholar 

  • Förster H, Jafarzadeh A (1994) The Bafg mining district in central Iran: a highly mineralized infracambrian volcanic field. Econ Geol 89:1697–1721

    Article  Google Scholar 

  • Gregg JM, Sibley DF (1984) Epigenetic dolomitization and the origin of xenotopic dolomite texture. J Sediment Petrol 54:908–931

    Google Scholar 

  • Haghipour A (1977) Geological map of Posht-e-Badam area. Geol Surv, Iran

    Google Scholar 

  • Hamedi MA (1995) Lower Palaeozoic sedimentology and stratigraphy of the Kerman region, East Central Iran. Phd Thesis, the University of Wollongong, New South Wales, Australia, 196 p

  • Hardie LA (1987) Perspectives dolomitization: a critical view of some current views. J Sediment Petrol 57:166–183

    Article  Google Scholar 

  • Huckriede R, Kursten M (1962) Geological study of Kerman-Stagehand (Iran), Geol Surv Iran, 197p

  • Hushmandzadeh A, Hamdi B, Nabavi M (1988) Precambrian-early Cambrian in Iran. Geol Surv Iran, intern report 3:29–33

    Google Scholar 

  • Jami M, Dunlop AC, Cohen DR (2007) Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, central Iran. Econ Geol 102:1111–1128

    Article  Google Scholar 

  • Jones B, Luth RW, Macneil AJ (2001) Poweder X-ray diffraction analysis of heterogeneous sedimentary dolostones. J Sediment Res 71:790–799

    Article  Google Scholar 

  • Krajewski KP, Lacka B, Kuzniarski M, Orlowski R, Prejbisz A (2001) Diagenetic origin of carbonate in the Marhøgda Bed (Jurassic) in Spitsbergen, Svalbard. Pol Polar Res 22:89–128

    Google Scholar 

  • Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger DH, Dunham JB, Ethington RL, Concepts and models of dolomitization. J Sediment Petrol 28: 87–110

  • Lopez- Horgue MA, Iriarte E, Schröder S, Fernandez-Mendiola PA, Caline B, Corneyllie H, Fremont J, Sudrie M, Zerti S (2010) Structurally controlled hydrothermal dolomites in Albian carbonates of the Ason valley, Basque Cantabrian Basin, Northern Spain. Mar Pet Geol 27:1069–1092

    Article  Google Scholar 

  • Machel HG, Lonne J (2002) Hydrothermal dolomite-a product of poor definition and imagination. Sediment Geol 152:163–171

    Article  Google Scholar 

  • Machel HG, Mountjoy EW (1986) Chemistry and environments of dolomitization a Reappraisa. Earth Sci Rev 23:175–122

    Article  Google Scholar 

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160

    Article  Google Scholar 

  • Mazzullo SJ (1992) Geochemical and neomorphic alteration of dolomite: a review. Carbonate Evaporite 7:21–37

    Article  Google Scholar 

  • Mehrabi B, Karimi B (2003) Jalal-Abad as a hydrothermal iron oxide deposit. The 22nd Geosciences Symposium, Geol Surv Iran, 8 p (in Farsi, with English abstract)

  • Morrow DW, Cumming GL, Koepnick RB (1986) Manetoe facies a gas bearing, megacrystalline, Devonian dolomite, Yukon and northwest Territories, Canada. AAPG Bull 70:702–720

    Google Scholar 

  • Nabavi MH (1976) Tectonic map of Iran. Geol Surv, Iran

    Google Scholar 

  • Nader FH, Swennen R, Ellam R (2004) Reflux stratabound dolostone and hydrothermal volcanism-associated dolostone: a two stage dolomitization model (Jurassic, Lebanon). Sedimentology 51:339–360

    Article  Google Scholar 

  • Nelson WA, Read JF (1990) Updip to downdip cementation and dolomitization patterns in a Mississipian aquifer, Appalachians. J Sediment Petrol 60:379–396

    Google Scholar 

  • Nielsen P, Swennen R, Muchez P, Keppens E (1998) Origin of Dinantian zebra dolomites south of the Brabant-Wales Massif, Belgium. Sedimentology 45:727–743

    Article  Google Scholar 

  • Packard JJ, Al-Aasm IS, Samson I, Berger Z, Davies A (2001) Devonian hydrothermal chert reservoir: the 225 bcf Parkland field, British Columbia, Canada. AAPG Bull 85:51–84

    Google Scholar 

  • Ramezani J (1997) Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand Area, Central Iran: Unpublished Ph.D. thesis, St. Louis, Missouri, Washington University, 416p

  • Ramezani J, Tucker RD (2003) The Saghand region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci 303:622–665

    Article  Google Scholar 

  • Ronchi P, Masetti D, Tassan S, Camocino D (2012) Hydrothermal dolomitization in platform and basin carbonate successions during thrusting: a hydrocarbon reservoir analogue (Mesozoic of venetian southern alps, Italy). Mar and Pet Geol 29:68–89

    Article  Google Scholar 

  • Samani B (1993) Saghand formation, a riftogenic unit of upper Precambrian in Central Iran. J Geol Surv Iran 2:32–45 (In Farsi with English abstract)

    Google Scholar 

  • Samani B (1998) Precambrian metallogeny in Central Iran. AEOI Sci Bull 17:1–16 (in Farsi with English abstract)

    Google Scholar 

  • Schmidt M, Xeflide S, Botz R, Mann S (2005) Oxygen isotope fractionation during synthesis of Ca-Mg carbonate and implications for sedimentary dolomite formation. Geochim Cosmo Acta 69:4665–4674

    Article  Google Scholar 

  • Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Petrol 57:967–975

    Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran. Petrol Geol Bull 52:1229–1258

    Google Scholar 

  • Stöcklin J (1974) possible ancient continental margins in Iran, in Burk, C.A., Drake, C.L. (eds.), the geology of continental margins: New York, springer 873–887

  • Stöcklin J, Setudehnia A (1977) Stratigraphic lexicon of Iran. Geol Surv Iran, 338 p.

  • Stosch HG, Romer RL, Daliran F (2011) Uranium–lead ages of apatite from iron oxide ores of the Bafq District, East-Central Iran. Miner Depos 46:9–21

    Article  Google Scholar 

  • Swart PK, Cantrell DL, Westphal H, Handford CR, Kendall CG (2005) Origin of dolomite in the Arab-D reservoir from the Ghawar Field, Sudi Arabia: evidence from petrographic and geochemical constraints. J Sediment Res 75:476–491

    Article  Google Scholar 

  • Technoexport (1976) Internal Report, exolration of iron oxide in Zarand district. 104 p

  • Torab FM, Lehmann B (2007) Magnetite–apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geo-chronology. Mineral Mag 71:347–363

    Article  Google Scholar 

  • Tucker ME (1991) Sedimentary petrology. Blackwell, Oxford

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Science, Cambridge

    Book  Google Scholar 

  • Vahdati Daneshmand F (1990) Geological study Zarand area (Iran). Internal report, Geol Surv Iran

    Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr and δ13C and δ18 O evolution of Phanerozoic sea water. Chem Geol 161:59–88

    Article  Google Scholar 

  • Wacey D, Wright DT, Boyce AJ (2007) A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia. Chem Geol 244:155–174

    Article  Google Scholar 

  • Warren JK (2000) Dolomite: occurrence, evolution and economically important association. Earth Sci Rev 52:1–81

    Article  Google Scholar 

  • Wilson AM, Sanford WE, Whitaker FA, Smart PL (2001) Spatial patterns of diagenesis during geothermal circulation in carbonate platforms. Am J Sci 301:727–752

    Article  Google Scholar 

  • Zhang J, Hu D, Qian Y, Wang X, Zhu J, Li Q, Xie X (2009) Formation of saddle dolomites in Upper Cambrian carbonates, Western Tarim Basin (northwest China): implications for fault-related fluid flow. Marine Pet Geol 26:1428–1440

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Kharazmi University, Iranian Mineral Processing Research Center (IMPRC), and Iranian Mines and Mining Industries Development and Renovation Organization (IMIDRO) for financial supports. We gratefully acknowledge the support of the Jalal-Abad mining staff during field investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Karimi Shahraki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabi, B., Karimi Shahraki, B., Bazargani Guilani, K. et al. Early Cambrian high-temperature dolomite of the Rizu Series in the Jalal-Abad iron ore deposit, Central Iran. Arab J Geosci 8, 7163–7176 (2015). https://doi.org/10.1007/s12517-014-1684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1684-4

Keywords

Navigation