Skip to main content

Advertisement

Log in

Magma mixing/mingling in Salmas granodiorite, NW Iran: evidence from mafic microgranular enclaves

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The interaction of mafic–intermediate and felsic rocks of the Salmas plutonic rocks produced mixed rocks (granodiorites) which contain mafic microgranular enclaves (MMEs). Enclaves ranging from a few millimeters to centimeters in size, and from ellipsoidal to rounded in shape. Based on both field observation and mineralogical compositions, MMEs are composed of quartz diorite whereas the felsic host rocks comprise mainly granodiorite. MMEs are characterized by a microporphiritic texture and revealed some types of microscopic textures, e.g., prismatic-cellular plagioclase with spike zones and rounded plagioclase megacrysts, blade-shaped biotite and acicular apatite. The host rocks show textures such as oscillatory- and reversely zoned plagioclase with spike zone. Compositions of plagioclases (An41 to An48) of MMEs are similar to those of host rocks (An38 to An45) which suggest partial to complete equilibration during mafic–felsic magma interactions. The individual petrographic and microstructural textures and mineral chemistry similarities between the MMEs and their host rocks and diorites indicate that the enclaves are of mixed origin and most probably formed by interaction of lower crust magma (granitic melt) and evolved mantle-derived magmas (diorites).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arian MA, Emamalipour A, Amini M (2011) Petrology and geochemistry of granitic masses and those metamorphic hallow in north–east of Saghez. J Earth 6:65–80

    Google Scholar 

  • Asmerom Y, Patchett PJ, Damon PE (1991) Crust-mantle interaction in continental arcs: inferences from the Mesozoic arc in the southwestern United States. Contrib Mineral Petrol 107:124–134

    Article  Google Scholar 

  • Barbarin B (1990a) Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geol J 25:227–238

    Article  Google Scholar 

  • Barbarin B (1990b) Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada batholith, California. J Geophys Res Solid Earth (1978–2012) 95:17747–17756

    Article  Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177

    Article  Google Scholar 

  • Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Trans Roy Soc Edinburgh Earth Sci 83:145–153

    Article  Google Scholar 

  • Barnes CG, Johnson K, Barnes MA, Prstvik T, Kistler RW, Sundvoll B (1995) The Grayback pluton: magmatism in a Jurassic back-arc environment, Klamath Mountains, Oregon. J Petrol 36:397–415

    Article  Google Scholar 

  • Baxter S, Feely M (2002) Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineral Petrol 76:63–74

    Article  Google Scholar 

  • Berberian M, King G (1981) Towards a paleogeography and tectonic evolution of Iran Canadian. J Earth Sci 18:210–265

    Google Scholar 

  • Blundy J, Sparks R (1992) Petrogenesis of mafic inclusions in granitoids of the Adamello Massif, Italy. J Petrol 33:1039–1104

    Article  Google Scholar 

  • Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78:1–24. doi:10.1016/j.lithos.2004.04.042

    Article  Google Scholar 

  • Castro A (2001) Plagioclase morphologies in assimilation experiments. Implications for disequilibrium melting in the generation of granodiorite rocks. Mineral Petrol 71:31–49

    Article  Google Scholar 

  • Castro A, Jesús D, Stephens WE (1990) Magma mixing in the subvolcanic environment: petrology of the Gerena interaction zone near Seville, Spain. Contrib Mineral Petrol 106:9–26

    Article  Google Scholar 

  • Dabiri R, Emami MH, Mollaei H, Chen B, Abedini MV, Omran NR, Ghaffari M (2011) Quaternary post-collision alkaline volcanism NW of Ahar (NW Iran): geochemical constraints of fractional crystallization process. Geol Carpath 62:547–562

    Article  Google Scholar 

  • Deevsalar R, Ghorbani MR, Ghaderi M, Ahmadian J, Murata M, Shinjo R (2014) Geochemistry and petrogenesis of arc-related to intraplate mafic magmatism from the Malayer-Boroujerd plutonic complex, northern Sanandaj-Sirjan magmatic zone, Iran Neues Jahrbuch für Geologie und Paläontologie, In Press

  • Didier J, Barbarin B (1991a) The different types of enclaves in granites—nomenclature. Enclave Gran Petrol 13:19–24

    Google Scholar 

  • Didier J, Barbarin B (1991b) Enclaves and granite petrology, Developments in petrology, Elsevier, Amsterdam, p 625

  • Donoghue S, Gamble J, Palmer A, Stewart R (1995) Magma mingling in an andesite pyroclastic flow of the Pourahu Member, Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 68:177–191

    Article  Google Scholar 

  • Dorais MJ, Whitney JA, Roden MF (1990) Origin of mafic enclaves in the Dinkey Creek pluton, central Sierra Nevada batholith, California. J Petrol 31:853–881

    Article  Google Scholar 

  • Elburg MA (1996) Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite, Warburton Granodiorite, Lachlan Fold Belt, Australia. Lithos 38:1–22

    Article  Google Scholar 

  • Ghaffari M (2008) Petrography, geochemistry and petrogenesis of plutonic bodies in Sheidan-Siah Kuh (NW of Salmas). MSc thesis in petrology, Tarbiat Modares University, Tehran, Iran

  • Ghaffari M, Rashidnejad-Omran N, Dabiri R, Chen B, Santos JF (2013) Mafic–intermediate plutonic rocks of the Salmas area, northwestern Iran: their source and petrogenesis significance. Int Geol Rev 55:2016–2029

    Article  Google Scholar 

  • Ghalamghash J, Nédélec A, Bellon H, Abedini MV, Bouchez J (2009) The Urumieh plutonic complex (NW Iran): a record of the geodynamic evolution of the Sanandaj–Sirjan zone during cretaceous times–Part I: petrogenesis and K/Ar dating. J Asian Earth Sci 35:401–415

    Article  Google Scholar 

  • Ghasemi A, Talbot C (2006) A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Hibbard M (1981) The magma mixing origin of mantled feldspars. Contrib Mineral Petrol 76:158–170

    Article  Google Scholar 

  • Hibbard M (1991) Textural anatomy of twelve magma mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology. Elsevier, Amsterdam, pp 431–444

  • Holden P, Halliday AN, Stephens WE (1987) Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature 330:53–56

  • Huppert H, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  • Janousek V, Bowes D, Rogers G, Farrow CM, Jelinek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543

    Article  Google Scholar 

  • Khodabandeh A, Soltani G, Sartipi A (2002) Geology map of Salmas, Scale 1:100000. Geology Survey of Iran

  • Kumar S, Rino V (2006) Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: evidence of magma mixing, mingling, and chemical equilibration. Contrib Mineral Petrol 152:591–609

    Article  Google Scholar 

  • Kumar S, Rino V, Pal A (2004) Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, Central India. Gondwan Res 7:539–548

    Article  Google Scholar 

  • Leake BE et al (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35:219–246

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Marsh BD (1984) Mechanics and energetics of magma formation and ascension. In: Boyd J (ed) Explosive volcanism, inception, evolution, and hazards. Nat Acad Press, pp 67–83

  • Mohajjel M, Fergusson C, Sahandi M (2003) Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Mollaei H, Yaghubpur A, Attar RS (2009) Geology and geochemistry of skarn deposits in the northern part of Ahar batholith, East Azarbaijan, NW Iran. Iran J Earth Sci 1:15–34

    Google Scholar 

  • Mollai H, Pe-Piper G, Dabiri R (2014) Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz, NW Iran. Geol Carpath 65:209–227

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Mineral Petrol 39:55–76

    Article  Google Scholar 

  • Neves S, Vauchez A (1995) Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil. Lithos 34:275–299

    Article  Google Scholar 

  • Perugini D, Poli G, Christofides G, Eleftheriadis G (2003) Magma mixing in the Sithonia plutonic complex, Greece: evidence from mafic microgranular enclaves. Mineral Petrol 78:173–200

    Article  Google Scholar 

  • Petford N, Gallagher K (2001) Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet Sci Lett 193:483–499

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Reid J Jr, Hamilton M (1987) Origin of Sierra Nevadan granite: evidence from small scale composite dikes. Contrib Mineral Petrol 96:441–454

    Article  Google Scholar 

  • Rhodes J, Dungan M, Blanchard D, Long P (1979) Magma mixing at mid-ocean ridges: evidence from basalts drilled near 22 N on the Mid-Atlantic ridge. Tectonophysics 55:35–61

    Article  Google Scholar 

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107:41–59

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310

    Article  Google Scholar 

  • Shahbazi H, Siebel W, Pourmoafee M, Ghorbani M, Sepahi AA, Shang CK, Vousoughi Abedini M (2010) Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): new evidence for Jurassic magmatism. J Asian Earth Sci 39:668–683

    Article  Google Scholar 

  • Silva M, Neiva A, Whitehouse M (2000) Geochemistry of enclaves and host granites from the Nelas area, central Portugal. Lithos 50:153–170

    Article  Google Scholar 

  • Torkian A, Khalili M, Sepahi AA (2008) Petrology and geochemistry of the I-type calc-alkaline Qorveh Granitoid complex, Sanandaj-Sirjan zone, western Iran. Neues Jahrbuch Für Mineralogie-Abhandlungen J Mineral Geochem 185:131–142

    Article  Google Scholar 

  • Troll VR, Donaldson CH, Emeleus CH (2004) Pre-eruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Centre, Scotland. Contrib Mineral Petrol 147:722–739

    Article  Google Scholar 

  • Vernon RH (1983) Restite, xenoliths and microgranitoid enclaves in granites. J & Proc R Soc New South Wales 116:77–103

  • Vernon R (1990) Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. J Geophys Res Solid Earth (1978–2012) 95:17849–17859

    Article  Google Scholar 

  • Waight TE, Maas R, Nicholls IA (2000) Fingerprinting feldspar phenocrysts using crystal isotopic composition stratigraphy: implications for crystal transfer and magma mingling in S-type granites. Contrib Mineral Petrol 139:227–239

    Article  Google Scholar 

  • White AJ, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22

    Article  Google Scholar 

  • Wiebe R, Smith D, Sturm M, King E, Seckler M (1997) Enclaves in the Cadillac Mountain granite (coastal Maine): samples of hybrid magma from the base of the chamber. J Petrol 38:393–423

    Article  Google Scholar 

  • Wyllie P, Cox K, Biggar G (1962) The habit of apatite in synthetic systems and igneous rocks. J Petrol 3:238–243

    Article  Google Scholar 

  • Zorpi M, Coulon C, Orsini J, Cocirta C (1989) Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics 157:315–329

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Joao Mata from Lisbon University, Portugal, for financial support in performing EPMA analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nematollah Rashidnejad-Omran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffari, M., Rashidnejad-Omran, N. Magma mixing/mingling in Salmas granodiorite, NW Iran: evidence from mafic microgranular enclaves. Arab J Geosci 8, 7141–7152 (2015). https://doi.org/10.1007/s12517-014-1674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1674-6

Keywords

Navigation