Skip to main content

Advertisement

Log in

Geology, geochemistry, sulfur isotope composition, and fluid inclusion data of Farsesh barite deposit, Lorestan Province, Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Farsesh barite in the central part of Iranian Sanandaj-Sirjan zone is a sample of epigenetic hydrothermal mineralization in dolomitized limestone, which provides appropriate chemicophysical conditions making the passage of mineral-bearing fluids possible. Barite veins may range from a few centimeters to 2 m in thickness that increases downward. The microthermometry measurements obtained from more than 30 fluid inclusions show relative homogenization temperatures ranging from 125 to 200 °C with an average of 110 °C for Farsesh barite deposits. The mean salinity measured proves 16 times as much as weight percentage of NaCl for barite. Coexistence of liquid- and vapor-rich fluid inclusions in barite minerals may provide an evidence of boiling in ore veins. Moreover, occurrence of bladed calcite, high-grade ore zones, and presence of hydrothermal breccia are all consistent with boiling. Thermometric studies indicate that homogenization temperatures (Th) for primary and pseudosecondary fluid inclusions in barite range from 125 to 200 °C with an average of 1,100 °C. The δ34S values of barite also lie between 8.88 and 16.6 %. The relatively narrow spread in δ34S values may suggest uniform environmental conditions throughout the mineralization field. Thus, δ34S values are lower than those of contemporaneous seawater, which indicates a contribution of magmatic sulfur to the ore-forming solution. Barite is marked by total amounts of rare Earth elements (REEs) (6.25–17.39 ppm). Moreover, chondrite-normalized REE patterns of barite indicate a fractionation of light REEs (i.e., LREEs) from La to Sm, similar to those for barite from different origins. The LaCN/LuCN ratios and chondrite-normalized REE patterns reveal that barite in Farsesh deposit is enriched in LREEs compared with heavy rare Earth elements (HREEs). Similarity between Ce/La ratios in barite samples and those found in deep-sea barite supports its marine origin. Lanthanum and Gd exhibit positive anomalies, which are common features of chemical marine sediments. Cerium shows a negative anomaly in most samples inherited from the negative Ce anomaly of hydrothermal fluid that is mixed with seawater at barite precipitation. The available data including tectonic setting, host rock characteristics, REE geochemistry, and sulfur isotopic compositions may support a hydrothermal submarine origin for Farsesh barite deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11

Similar content being viewed by others

References

  • Alexander BW, Bau M, Andersson P, Dulski P (2008) Continentally-derived solutes in shallow archean seawater: rare earth elements and Nd isotope evidence in iron formation from the 2.9 Ga Pongola supergroup, South Africa. Geochim Cosmochim Acta 72:378–394

    Article  Google Scholar 

  • Arribas AJR, Cunningham CG, Rytuba RO, Kelly WC, Podwysocki MH, McKee EH, Tosdal RM (1995) Geology, geochemistry, fluid inclusion and isotope geochemistry of the Rodalquilar Au alunite deposits. Spain Econ Geol 90:795–822

    Article  Google Scholar 

  • Ayhan A (2001) Stratiform barite deposits between Sarkikaraagac (Isparta) and Huyuk (Konya) in Sultandag region, Turkey. Chem Erde-Geochem 61(1):54–66

  • Bao SX, Zhou HY, Peng XT, Ji FW, Yao HQ (2008) Geochemistry of REE and yttrium in hydrothermal fluids from the endeavour segment, Juan de Fuca Ridge. Geochem J 42:359–370

    Article  Google Scholar 

  • Bau M, Koschinsky A, Dulski P, Hein JR (1996) Comparison of the partitioning behaviors of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim Cosmochim Acta 60:1709–1725

    Article  Google Scholar 

  • Bau M, Usui A, Pracejus B, Mita N, Kanai Y, Irber W, Dulski P (1998) Geochemistry of low-temperature water-rock interaction: evidence from natural waters, andesite, and iron-oxyhydroxide precipitates at Nishiki-numa iron-spring, Hokkaido, Japan. Chem Geol 151:293–307

    Article  Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Bernd GL, Paul MA (1996) Geochemistry and exploration significance of ironstones and barite-rich rocks in the Proterozoic Willyama supergroup, olary block, South Australia. J Geochem Explor 57:57–73

    Article  Google Scholar 

  • Boynton, WV (1984) Geochemistry of the rare earth elements: Meteorite studies. Henderson, P. (ed). Rare Earth Element Geochemistry. Elsevier

  • Chen D, Qing H, Yan X, Li H (2006) Hydrothermal venting and basin evolution (Devonian, South China): constraints from rare earth element geochemistry of chert. Sediment Geol 183:203–216

    Article  Google Scholar 

  • Chow TJ, Goldberg ED (1960) On the marine geo-chemistry of barium. Geochim Cosmochim Acta 20:192–198

    Article  Google Scholar 

  • Church TM, Wolgemuth K (1972) Marine barite saturation. Earth Planet Sci Lett 15:35–44

    Article  Google Scholar 

  • Clark RG, Hobson KA, Nichols JD, Bearhop S (2004) Avian dispersal and demography: scaling up to the landscape and beyond. Condor 106(4):717–719

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260

    Article  Google Scholar 

  • Cortecci G, Frizzo P (1993) Origin of siderite deposits from the Lombardy Valleys, northern Italy: a carbon, oxygen and strontium isotope study. Chem Geol 105(4):293–303

  • Davoudzadeh M (1997) Iran. In: Moores EM, Fairbridge RW (eds) Encyclopedia of European and Asian regional geology. Chapman & Hall, London, pp 384–405

    Chapter  Google Scholar 

  • Ding L, Zhong D (1996) Characteristics of rare earth elements and cerium anomalies in cherts from the Paleo-Tethys in Changning-Menglian belt in western Yunnan China. Sci China (Ser D) 39:35–45

    Google Scholar 

  • Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquet Y, Appriou P, Gamo T (1999) Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta 63:627–643

    Article  Google Scholar 

  • Ehya F (2012) Rare earth element and stable isotope (O, S) geochemistry of barite from the Bijgan deposit, Markazi Province, Iran. Miner Petrol 104:81–93

    Article  Google Scholar 

  • Elderfield H (1988) The oceanic chemistry of the rare earth elements. Philos Trans R Soc Lond A 325:105–126

    Article  Google Scholar 

  • Faure G (1998) In U. S. principles and applications of geochemistry. Prentice Hall, New Jersey

    Google Scholar 

  • Feng D, Roberts HH (2011) Geochemical characteristics of barite deposits at cold seeps from the northern Gulf of Mexico continental slope. Earth Planet Sci Lett. doi:10.1016/j. epsl.2011.06.017

    Google Scholar 

  • Fuquan Y, Jingwen Y, Yitian W, Frank PB (2006) Geology and geochemistry of the Bulong quartz–barite vein-type gold deposit in the Xinjiang Uygur Autonomous Region, China. Ore Geol Rev 29:52–76

    Article  Google Scholar 

  • Ghazban F, McNutt RH, Schwarcz HP (1994) Genesis of sediment-hosted Zn-Pb-Ba deposits in Irankouh, Isfahan area. Econ Geol 89(6):1262–1278

    Article  Google Scholar 

  • Ghorbani M (2002) An introduction to economic geology of Iran. Natl Geosci Database Iran

  • Glasby GP, Cherkashov GA, Gavrilenko GM, Rashidov VA, Slovtsov IB (2006) Submarine hydrothermal activity and mineralization on the Kurile and western Aleutian Island arcs. NW Pac Mar Geol 231:163–180

    Article  Google Scholar 

  • Göke A, Bozkaya G (2008) Fluid inclusion and stable isotope characteristics of the Karalar (Gazipasa, Antalya) Barite–Galena Deposits, southern Turkey. Geol Ore Depos 50:145–154

    Article  Google Scholar 

  • Goodfellow WD, Blaise B (1988) Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle Valley, northern Juan de Fuca Ridge. Can Mineral 26:675–696

  • Gromet LP, Haskin LA, Korotev RL, Dymek RF (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48(12):2469–2482

  • Guichard F, Church TM, Treuil M, Jaffrezic H (1979) Rare earths in barites: distribution and effects on aqueous partitioning. Geochim Cosmochim Acta 49:983–997

    Article  Google Scholar 

  • Gultekin AH, Orgun Y, Suner F (2003) Geology, mineralogy, and fluid inclusion data of the Kizilcaorenflurite-barite-REE deposit, Eskisehir, Turkey. J Asian Earth Sci 21:365–376

    Article  Google Scholar 

  • Hall DL, Cohen LH, Schiffman P (1988) Hydrothermal alteration associated with the iron skarn deposit, Eastern Mojave Desert, San Bernardino County. Calif Econ Geol 83:568–587

    Article  Google Scholar 

  • Hannington MD, Scott SD (1989) Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides; evidence from sulfide mineralogy and the composition of sphalerite. Econ Geol 84(7):1978–1995

  • Hanor JS (2000) Barite-celestine geochemistry and environments of formation. In: Reviews in mineralogy and geochemistry–sulfate minerals (Eds C.N. Alpers, J.L. Jambor and D.K. Nordstrom), 40, Washington, DC: Mineralogical Society of America

  • Hedenquist JW, Henlly S, Okay AI (1985) The importance of CO2 of freezing point measurements of fluid inclusions; evidence from active geothermal system and implications for epithermal ore deposition. Econ Geol 80:1379–1404

    Article  Google Scholar 

  • Hein JR, Zierenberg RA, Maynard JB, Hannington MD (2007) Multifarious barite-forming environments along a rifted continental margin, southern California Borderland. Deep-Sea Res II 54:1327–1349

    Article  Google Scholar 

  • Hill GT, Campbell AR, Kyle PR (2000) Geochemistry of southwestern New Mexico fluorite occurrences: implications for precious exploration in fluorite-bearing systems. J Geochem Explor 68:1–20

    Article  Google Scholar 

  • Hoefs J, Sywall M (1997) Lithium isotope composition of quaternary and tertiary biogene carbonates and a global lithium isotope balance. Geochim Cosmochim Acta 61:2679–2690

    Article  Google Scholar 

  • Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity. Harper-Collins, New York, p 400

    Google Scholar 

  • Jewell PW, Stallard RF (1991) Geochemistry and paleoceanographic setting of central Nevada bedded barites. J Geol 151–170

  • Jurković IB, Garašić V, Jurković IM (2011) Geochemical characteristics of mercurian tetrahedrite, barite and fluorite from the Duboki Vagan, Glumac and Dubrave-Dugi Dol barite deposits, south of Kreševo, Mid-Bosnian Schist Mts. Geol Croat 64:49–59

    Article  Google Scholar 

  • Kesler SE (1977) Geochemistry of Manto barite deposits. Northern Coahuila, Mexico. Econ. Geologija 72:204–218

    Google Scholar 

  • Klinkhammer G, Elderfield H, Hudson A (1983) Rare earth elements in seawater near hydrothermal vents. Nature 305:185–188

  • Kusakabe S, Harada K, Mukai T (1990) The rare inversion with a P element at the breakpoint maintained in a natural population of Drosophila melanogaster. Genetica 82(2):111–115

    Article  Google Scholar 

  • Latifi R (2000) Geological, petrological and geochemical study of intrusions in south and northeast of Zaferghand (in Persian). M.Sc thesis, Isfahan University, Iran

  • Liaghat SM, Moore F, Jami M (2000) Kuh-e-surmeh mineralization: a carbonate-hosted Zn-Pb deposit in the simply folded belt of the Zagros Mountains, SW Iran. Mineral Deposita 35:72–78

    Article  Google Scholar 

  • Luders V, Pracejus B, Halbach P (2001) Fluid inclusion and sulfur isotope studies in probable modem analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chem Geol 173:45–58

    Article  Google Scholar 

  • Martin EE, MacDougall JD, Herbert TD, Paytan A, Kastner M (1995) Strontium and neodymium isotopic analyses of marine barite separates. Geochim Cosmochim Acta 59:1353–1361

    Article  Google Scholar 

  • Maynard JB, Okita PM (1991) Bedded barite deposits in the United States, Canada, Germany, and China; two major types based on tectonic setting. Econ Geol 86(2):364–376

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Rev Mineral 21:169–200

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Monnin C, Jeandel C, Cattaldo T, Dears F (1999) The marine barite saturation state of the world’s oceans. Mar Chem 65:253–261

    Article  Google Scholar 

  • Murchey BL, Madrid RJ, Poole FG (1987) Paleozoic bedded barite associated with chert in western North America. In: Hein JR (ed) Siliceous sedimentary rock-hosted ores and petroleum. Van Nostrand Reinhold, New York

    Google Scholar 

  • Murray RW (1994) Chemical criteria to identify the depositional environment of chert: general principles and applications. Sediment Geol 90(3):213–232

  • Natalin BA, Şengör AM (2005) Late Paleozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the Palaeo-Tethyanclosure. Tectonophysics 404:175–202

    Article  Google Scholar 

  • Noguchi T, Shinjo R, Ito M, Takada J, Oomori T (2011) Barite geochemistry from hydrothermal chimneys of the Okinawa trough: insight into chimney formation and fluid/sediment interaction. J Mineral Petrol Sci 106:26–35

    Article  Google Scholar 

  • Paytan A, Mearon S, Cobb K, Kastner M (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30(8):747–750

  • Rees CE, Jenkins WJ, Monster J (1978) The sulphur isotopic composition of ocean water sulphate. Geochim Cosmochim Acta 42(4):377–381

  • Richards JP, Wilkinson D, Ulrich T (2006) Geology of the sari gunay epithermal gold deposit, Northwest Iran. Econ Geol 101:1455–1496

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev. Mineral. 12

  • Ruiz J, Kelley WC, Kaiser CJ (1985) Strontium isotopic evidence for the origin of barites and sulfides from the Mississippi Valley type ore deposits in southeast Missouri- a discussion. Econ Geol 80:773–778

    Article  Google Scholar 

  • Rushdi AI, McManus J, Collier RW (2000) Marine barite and celestite saturation in seawater. Mar Chem 69:19–31

    Article  Google Scholar 

  • Seal RR, Alpers CN, Rye RO (2000) Stable isotope systematics of sulfate minerals. Rev Mineral Geochem 40(1):541–602

  • Shields G, Kimura H, Yang J, Gammon P (2004) Sulphur isotopic evolution of Neoproterozoic-Cambrian seawater: New francolite-bound sulphate δ34S data and a critical appraisal of the existing record. Chem Geol 204:163–182

    Article  Google Scholar 

  • Shimizu H, Masuda A (1977) Cerium in chert as an indication of marine environment of its formation. Nature 266:346–348

    Article  Google Scholar 

  • Stampfli GM (2000) The Tethyan Ocean. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonic and magmatism in Turkey and surrounding area, Vol. 173. Geological Society, London, Special Publication, pp 1–23

  • Stöcklin J (1977) Structural correlation of the Alpine ranges between Iran and central Asia. Mém Hors Sér Soc Géol Fr 8:333–353

    Google Scholar 

  • Stoffers P, Worthington TJ, Schwarz-Schampera U, Hannington MD, Massoth GJ, Hekinian R, Schmidt M, Lundsten LJ, Evans LJ, Vaiomo’unga R, Kerby T (2006) Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, southwest Pacific. Geology 34:453–456

    Article  Google Scholar 

  • Taghipour B, Moore F, Mackizadeh MA (2010) Stable isotope evidences of jarosite–barite mineralization in the Rangan rhyolitic dome NE Isfahan, Iran. Chem Erde 70:377–384

    Article  Google Scholar 

  • Torres ME, Bohrmann G, Dube TE, Poole FG (2003) Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins. Geology 31:897–900

    Article  Google Scholar 

  • Valenza K, Moritz R, Mouttaqi A, Fontignie D, Sharp Z (2000) Vein and karst barite deposits in the Western Jebilet of Morocco: fluid inclusion and isotope (S, O, Sr) evidence for regional fluid mixing related to central Atlantic rifting. Econ Geol 95:587–606

    Google Scholar 

  • Wagner T, Kirnbauer T, Boyce AJ, Fallick AE (2005) Barite–pyrite mineralization of the Wiesbaden thermal spring system, Germany: a 500-kyr record of geochemical evolution. Geofluids 5:124–139

    Article  Google Scholar 

  • Wang Z, Li G (1991) Barite and witherite deposits in Lower Cambrian shales of South China: stratigraphic distribution and geochemical characterization. Econ Geol 86:354–363

  • Zhang HF, Li SR, Santosh M, Liu JJ, Diwu CR, Zhang H (2013) Magmatism and metallogeny associated with mantle upwelling: zircon U–Pb and Lu–Hf constraints from the gold-mineralized Jinchang granite, NE China. Ore Geol Rev 54:138–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Mokhtari Asl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asl, S.M., Jafari, M., Sahamiyeh, R.Z. et al. Geology, geochemistry, sulfur isotope composition, and fluid inclusion data of Farsesh barite deposit, Lorestan Province, Iran. Arab J Geosci 8, 7125–7139 (2015). https://doi.org/10.1007/s12517-014-1673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1673-7

Keywords

Navigation