Advertisement

Arabian Journal of Geosciences

, Volume 8, Issue 8, pp 6047–6062 | Cite as

Delineation of the radioactive elements based on the radiometric data using concentration–area fractal method in the Saghand area, Central Iran

  • Masoumeh KhalajmasoumiEmail author
  • Mohammad Lotfi
  • Peyman Afzal
  • Behnam Sadeghi
  • Ayyoub Memar Kochebagh
  • Ahmad Khakzad
  • Afshar Ziazarifi
Original Paper

Abstract

The aim of this research is the separation of the airborne geophysical anomalies of uranium (U) and thorium (Th) using concentration–area (C–A) fractal method in the Saghand area, Central Iran. At the first step, the C–A log–log plots of U and Th were generated and their thresholds were identified. The U and Th log–log plots obtained from the C–A method indicate the existence of enrichments in the study area. The intensity anomaly map based on the C–A fractal method shows the amounts of 2,238.721–2,379.7 eppm for U and high amounts 1,862.087–1,943.8 eppm for Th. Based on the results obtained from the multifractal modeling, the main anomalies of U and Th occurred in the central part toward the north of the study area and the other parts in the south and SE of the area, especially U. The central part of the area is located in the metasomatic units, and it is associated with epidote and chlorite alterations. The C–A anomalies were further done using ground radiometric data and X-ray fluorescence (XRF) analysis revealing higher than 837 and 575 ppm for U and Th concentration values, respectively.

Keywords

Fractal modeling Concentration–area Uranium Thorium Saghand Central Iran 

Notes

Acknowledgments

The authors wish to acknowledge research deputy of Islamic Azad University (Department of Geology, Science and Research University), for supporting this research and Geological Survey of Iran and Atomic Energy Organization of Iran for assisting us with data and analysis.

References

  1. Abd El Nabi SH (1995) Statistical evaluation of airborne gamma ray spectrometric data from the Magal Gebriel area, south Eastern Desert, Egypt. J Appl Geophys 34:47–54CrossRefGoogle Scholar
  2. Afzal P, Khakzad A, Moarefvand P, Rashidnejad Omran N, Esfandiari B, FadakarAlghalandis Y (2010) Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system. Central Iran. J Geochem Explor 104:34–46CrossRefGoogle Scholar
  3. Afzal P, FadakarAlghalandis Y, Khakzad A, Moarefvand P, Rashidnejad Omran N (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108:220–232CrossRefGoogle Scholar
  4. Afzal P, Zia Zarifi A, Bijan Yasrebi A (2012) Identification of U targets based on airborne radiometric data analysis by using multifractal modeling, Tark and Avanligh 1:50 000 sheets, NW Iran. Nonlinear Proc Geoph 19:283–289. doi: 10.5194/npg-19-283 CrossRefGoogle Scholar
  5. Agterberg FP (1995) Multifractal modeling of the size and grades of the giant and supergianet deposits. Int Geol Rev 37:1–8CrossRefGoogle Scholar
  6. Arias M, Gumiel P, Martín-Izard A (2012) Multifractal analysis of geochemical anomalies: a tool for assessing prospectivity at the SE border of the Ossa Morena Zone, Variscan Massif (Spain). J Geochem Explor 122:101–112CrossRefGoogle Scholar
  7. Asfahani J, Al-Hent R, Aissa M (2009) Uranium statistical and geological evaluation of airborne spectrometric data in the Al-Awabed region and its surroundings (Area-3), Northern Palmyrides, Syria. Appl Radiat Isot 67:654–663CrossRefGoogle Scholar
  8. Bolviken B, Stokke PR, Feder J, Jossang T (1992) The fractal nature of geochemical landscapes. J Geochem Explor 43:91–109CrossRefGoogle Scholar
  9. Bonyadi Z, Davidson GJ, Mehrabi B, Meffre S, Ghazban F (2011) Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry. Chem Geol 281(3–4):253–269CrossRefGoogle Scholar
  10. Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS, handbook of exploration and environmental geochemistry. Elsevier, Amsterdam 11: 351Google Scholar
  11. Carranza EJM (2009) Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol Rev 35:383–400CrossRefGoogle Scholar
  12. Carranza EJM (2010) From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resour Geol 61:30–51CrossRefGoogle Scholar
  13. Carranza EJM, Sadeghi M (2010) Predictive mapping of prospectively and quantitative estimation of undiscovered VMS deposits inSkellefte district (Sweden). Ore Geol Rev 38:219–241CrossRefGoogle Scholar
  14. Carranza EJM, Owusu E, Hale M (2009) Mapping of prospectivity and estimation of number of undiscovered prospects for lode–gold, southwestern Ashanti Belt, Ghana. Miner Deposita 44(8):915–938CrossRefGoogle Scholar
  15. Cheng Q (1999) Multifractality and spatial analysis. Comput Geosci 25:949–961CrossRefGoogle Scholar
  16. Cheng Q (2004) Quantifying the generalized self-similarity of spatial patterns for mineral resources assessment, earth science. J China Univ Geosci 29(6):733–743Google Scholar
  17. Cheng Q (2006a) Singularity-generalized self-similarity-fractal spectrum (3 S) models, earth science. J China Univ Geosci 31(3):337–348Google Scholar
  18. Cheng Q (2006b) GIS-based multifractal anomaly analysis for prediction of mineralization and mineral deposits, In: Harris J (ed) GIS applications in earth sciences. Geological Association of Canada Special Paper 289–300Google Scholar
  19. Cheng Q (2007) Multifractal imaging filtering and decomposition methods in space, fourier frequency, and eigen domains. Nonlinear Proc Geophys 14:293–303. doi: 10.5194/npg-14-293 CrossRefGoogle Scholar
  20. Cheng Q, Agterberg FP (1996) Multifractal modeling and saptial statistics. Math Geol 28:1–16CrossRefGoogle Scholar
  21. Cheng Q, Agterberg FP, Ballantyn SB (1994) The separartion of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130CrossRefGoogle Scholar
  22. Daliran F, Stosch HG (2005) Geology and metallogenesis of the phosphate and rare earth element resources of the Bafq iron–ore district, central Iran. Proceedings of the 20th World Mining Congress, Iran, 357–361Google Scholar
  23. David M (1970) Geostatistical ore reserve estimation. Elsevier, Amsterdam, 283Google Scholar
  24. Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New YorkGoogle Scholar
  25. Davitt T, and Dardis O (2003) Airborne geophysics in Ireland—techniques and benefits to the extractive industry. Exploration and Mining Division, Department of Communications, Marine and Natural ResourcesGoogle Scholar
  26. Daya Sagar BS, Rangarajan G, Veneziano D (2004) Fractals in geophysics. Chaos Soliton Fract 19:237–239CrossRefGoogle Scholar
  27. Deng J, Wang Q, Yang L, Wang Y, Gong Q, Liu H (2010) Delineationand explanation of geochemical anomalies using fractal models inthe Heqing area, Yunnan Province, China. J Geochem Explor 105:95–105CrossRefGoogle Scholar
  28. Dimri VP (2005) Fractal behavior of the earth system. Springer, 208Google Scholar
  29. El-Sadek MA, Ammar A, Omran MA, Abu Elkheer HM (2011) Air-borne γ-ray spectrometric characteristics of lithological units and environmental issues in the Bahariya Oases area in the northern part of western desert, Egypt. Arab J Geosci 4(7–8):1151–1161CrossRefGoogle Scholar
  30. Evertz CJG, Mandelbrot BB (1992) Multifractal measures, appendix B. In: H-O P, Jurgens H, Saupe D (eds) Chaos and fractals. Springer, New York, pp 922–953Google Scholar
  31. Förster H, Jafarzadeh A (1994) The Bafq mining district in Central Iran—a highly mineralized Infracambrian volcanic field. Econ Geol 89:1697–1721CrossRefGoogle Scholar
  32. Gaci S, Zaourar N, Briqueu L, Djeddi M (2011) Impact of the pre-processings on the fractal properties of the airborne gamma ray measurements: a case study from Hoggar (Algeria). Arab J Geosci. doi: 10.1007/s12517-011-0407-3
  33. Gettings ME (2005) Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the needle creek igneous center of the Absaroka Mountains, Wyoming. Nonlinear Proc Geophys 12:587–601. doi: 10.5194/npg-12-587 CrossRefGoogle Scholar
  34. Goncalves MA (2001) Characterization of geochemical distributions using multifractal models. Math Geol 33:41–61CrossRefGoogle Scholar
  35. Goncalves MA, Mateus A, Oliveira V (2001) Geochemical anomaly separation by multifractal modeling. J Geochem Explor 72:91–114CrossRefGoogle Scholar
  36. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 33:1141–1151CrossRefGoogle Scholar
  37. Hassanpour S, Afzal P (2013) Application of concentration-number (C-N) multifractal modelling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arab J Geosci 6:957–970. doi: 10.1007/s12517-011-0396-2 CrossRefGoogle Scholar
  38. Heidari SM, Ghaderi M, Afzal P (2013) Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au-Ag (Cu) deposit, NW Iran. Appl Geochem 31:119–132CrossRefGoogle Scholar
  39. Hosseini SA, Afzal P, Sadeghi B, Sharmad T, Shahrokhi SV, Farhadinejad T (2014) Prospection of Au mineralization based on stream sediments and lithogeochemical data using multifractal modeling in Alut 1:100,000 sheets, NW Iran. Arab J Geosci. doi: 10.1007/s12517-014-1436-5 Google Scholar
  40. Jami M (2005) Geology, geochemistry & evolution of Esfordi phosphate (Iron Deposit, Bafq Area—Central Iran), Unpublished Ph.D thesis, University of New South Wales 384Google Scholar
  41. Jami M, Dunlop AC, Cohen DR (2007) Fluid inclusion and stable isotope study of the Esfordi apatite–magnetite deposit, Central Iran. Econ Geol 102(6):1111–1128CrossRefGoogle Scholar
  42. Korvin G (1992) Fractal models in the earth science. Elsevier, Amsterdam, 396Google Scholar
  43. Li Q, Cheng Q (2006) Visual anomaly: a GIS-based multifractal method for geochemical and geophysical anomaly separation in Walsh domain. Comput Geosci 32:663–672CrossRefGoogle Scholar
  44. Li C, Ma T, Shi J (2003) Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor 77:167–175CrossRefGoogle Scholar
  45. Lima A, De Vivo B, Cicchella D, Cortini M, Albanese S (2003) Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy), Campania region. Appl Geochem 18:1853–1865CrossRefGoogle Scholar
  46. Mandelbrot BB (1983) The fractal geometry of nature. W. H. Freeman, San Fransisco, 468Google Scholar
  47. Monecke T, Monecke J, Herzig PM, Gemmell JB, Monch W (2005) Truncated fractal frequency distribution of element abundancedata: a dynamic model for the metasomatic enrichment of baseand precious metals. Earth Planet Sci Lett 232:363–378CrossRefGoogle Scholar
  48. Nazarpour A, Omran NR, Paydar GR (2013) Application of multifractal models to identify geochemical anomalies in Zarshuran Au deposit, NW Iran. Arab J Geosci 1–13. doi: 10.1007/s12517-013-1183-z
  49. Rafiee A (2005) Separating geochemical anomalies in stream sediment media by applying combination of fractal concentration area model and multivariate analysis (Case study: Jeal-e-Barez 1:100,000 Sheet, Iran), 20th World Mining Congress Proceeding, Iran 461–470Google Scholar
  50. Raghuwanshi SS (1992) Airborne gamma-ray spectrometry in uranium exploration. Adv Space Res 12:77–81CrossRefGoogle Scholar
  51. Rahmati A, Afzal P, Abrishamifar SA, Sadeghi B (2014) Application of concentration-number and concentration-volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran. Arab J Geosci. doi: 10.1007/s12517-014-1330-1 Google Scholar
  52. Ramezani J (1997) Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand area, Central Iran. Unpublished PhD thesis, Washington University, St Louis, Mo, USA, 416Google Scholar
  53. Ramezani J, Tucker RD (2003) The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for gondwana tectonics. J Sci 303:622–665Google Scholar
  54. Ranjbar H, Hassanzadeh H, Torabi M, Ilaghi O (2001) Integration and analysis of airborne geophysical data of the Darrehzar area, Kerman Province, Iran, using principal component analysis. J Appl Geophys 48:33–41CrossRefGoogle Scholar
  55. Sadeghi B, Moarefvand P, Afzal P, Yasrebi AB, Daneshvar Saein L (2012) Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. J Geochem Explor Special Issue “fractal/multifractal modelling of geochemical data” 122:9–19Google Scholar
  56. Samani B (1988) Metallogeny of the Precambrian in Iran. Research 39:85–106Google Scholar
  57. Samani B, Talezadeh lari Y (1988) Report of the first phase of uranium exploration project in Saghand area. Report No225Google Scholar
  58. Shamseddin Meigoony M, Afzal P, Gholinejad M, Yasrebi AB, Sadeghi B (2013) Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1:100000 sheet, Central Iran. Arab J Geosci. doi: 10.1007/s12517-013-1074-3 Google Scholar
  59. Shen W, Fang C, Zhan D (2009) Fractal and chaos research of geomagnetic polarity reversal. Earth Sci Front 16:201–206CrossRefGoogle Scholar
  60. Sinclair M (1994) A diagnostic model for estimating orographic precipitation. J Appl Meteorol 33:1163–1175CrossRefGoogle Scholar
  61. Tourliere B, Perrin J, Le Berre P, Pasquet JF (2003) Use of airborne gamma-ray spectrometry for kaolin exploration. J Appl Geophys 53:91–102CrossRefGoogle Scholar
  62. Turcotte DL (1989) Fractals in geology and geophysics. Pure Appl Geophys 131:171–196CrossRefGoogle Scholar
  63. Turcotte DL (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge, 398CrossRefGoogle Scholar
  64. Turcotte DL (2004) The relationship of fractals in geophysics to “the new science”. Chaos Soliton Fract 19:255–258CrossRefGoogle Scholar
  65. Turcotte DL, Schubert G (2002) Book reviews geodynamics, 2nd ed. xv Cambridge, New York, Melbourne: Cambridge University 0 521 66186 2; 0 521 66624 4 (pb). Geol Mag 139: 2002, doi: 10.1017/S0016756802217239, 456
  66. Wang Z, Cheng Q, Xu D, Dong Y (2008) Fractal modeling of sphalerite banding in JindingPb–Zn deposit, Yunnan, Southwestern. China. J China Univ Geosci 19(1):77–84CrossRefGoogle Scholar
  67. Wang QF, Deng J, Liu H, Yang LQ, Wan L, Zhang RZ (2010) Fractal models for ore reserve estimation. Ore Geol Rev 37:2–14CrossRefGoogle Scholar
  68. Wang QF, Deng J, Liu H, Wang Y, Sun X, Wan L (2011) Fractal models for estimating local reserves with different mineralization qualities and spatial variations. J Geochem Explor 108:196–208CrossRefGoogle Scholar
  69. Xie S, Cheng Q, Zhang S, Huang K (2010) Assessing microstructures of pyrrhotites in basalts by multifractal analysis. Nonlinear Proc Geophys 17:319–327. doi: 10.5194/npg-17-319-2010 CrossRefGoogle Scholar
  70. Yao L, Cheng Q (2011) Multi-scale interactions of geological processes during mineralization: cascade dynamics model and multifractal simulation. Nonlinear Proc Geophys 18:161–170. doi: 10.5194/npg-18-161 CrossRefGoogle Scholar
  71. Zia Zarifi A (2009) Regional uranium exploration in 1:50000 sheets of Tark and Avanligh areas in Eastern Azerbaijan Province, Iran. PhD thesis, Islamic Azad University, Science and research branch, 287Google Scholar
  72. Zia Zarifi A, Afzal P, Darvishzadeh A (2010) Separating geophysical anomalies in airborne radiometric data by applying fractal concentration-area model, Tark 1:50,000 Sheet, NW Iran. Proceeding of International Mining Congress & Expo (Abstract Volume) 20Google Scholar
  73. Zuo R, Carranza EJM, Cheng Q (2012) Fractal/multifractal modelling of geochemic exploration data. J Geochem Explor 122:1–3CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2014

Authors and Affiliations

  • Masoumeh Khalajmasoumi
    • 1
    Email author
  • Mohammad Lotfi
    • 2
  • Peyman Afzal
    • 3
    • 4
  • Behnam Sadeghi
    • 3
    • 5
  • Ayyoub Memar Kochebagh
    • 3
  • Ahmad Khakzad
    • 2
  • Afshar Ziazarifi
    • 6
  1. 1.Department of Geology, Science and Research BranchIslamic Azad University (IAU)TehranIran
  2. 2.Departments of Geology, North Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Mining Engineering, Faculty of Engineering, South Tehran branchIslamic Azad UniversityTehranIran
  4. 4.Camborne School of MinesUniversity of ExeterPenrynUK
  5. 5.Young Researchers and Elite Club, South Tehran BranchIslamic Azad UniversityTehranIran
  6. 6.Department of Mining Engineering, Lahijan BranchIslamic Azad UniversityLahijanIran

Personalised recommendations