Skip to main content

Advertisement

Log in

Mapping recharge potential zones and natural recharge calculation: study case in Sfax region

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The groundwater constitutes the major water resource in the study area of the current paper that is Sfax region. The latter is located in the south of Tunisia where the climate is arid. In fact, the natural groundwater recharge of the region is deeply affected by the lack of precipitations which affects its natural groundwater recharge. The aim of the current paper is to define recharge potential zones and to estimate the rainfall recharge of the shallow groundwater. Henceforth, the potential recharge map was established, based on the basin characteristics using lithology, topography, slope, and stream network parameters. Recharge estimations were based on the numerical methods: the Estimation of Recharge in Overexploited Aquifers (Estimación de la Recarga en Acuíferos Sobreexplotados) (ERAS) numerical model, the Schoeller equation, the Fersi equations, and the Direction Générale des Ressources en Eaux (General Administration of Water resources) (DGRE) coefficients. As a matter of fact, applying the Fersi equations and the DGRE coefficients on the potential zones allowed the deduction of a new spatial repartition of both favorable and unfavorable recharge zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

PET:

Potential evapotranspiration

WTF:

Water table fluctuation

GIS:

Geographic information system

DEM:

Digital elevation model

R :

Recharge (mm/year)

P :

Average of annual precipitations (mm/year)

C1:

Average concentration of chloride from rainfall (mg/l)

C2:

Average concentration of chloride from groundwater (mg/l)

P i :

The annual rainfall (mm)

Ri :

Annual recharge (mm)

T i :

The average air temperature in (°C)

β:

Dimensionless calibration parameter

M :

Calibrated parameter

N :

Calibrated parameter

I1:

Efficient infiltration for moderate permeability (mm)

I2:

Efficient infiltration for low permeability

References

  • Abdalla F (2012) Mapping of groundwater prospective zones using remote sensing and GIStechniques: A case study from the Central Eastern Desert, Egypt. J Afr Earth Sci 70(2012):8–17

    Article  Google Scholar 

  • Aguilera H, Murillo JM (2009) The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environ Geol 57:963–974

    Article  Google Scholar 

  • Andreu JM, Delgado J, García-Sánchez E, Pulido-Bosch A, Bellot J, Chirino E, Ortiz de Urbina JM (2001) Caracterización del funcionamiento y la recarga del acuífero del Ventós-Castellar (Alicante). Rev Soc Geol Esp 14:247–254

    Google Scholar 

  • Andreu JM, Alcalá FJ, Vallejos Á, Pulido-Bosch A (2011) Recharge to mountainous carbonated aquifers in SE Spain: Different approaches and new challenges. J Arid Environ 75(2011):1262–1270

    Article  Google Scholar 

  • Banton O, Bangoy LM (1997) Hydrogéologie: Multi-science environnementale des eaux souterraines. Université du Québec / AUPELF, Québec, p 460

    Google Scholar 

  • Ben Brahim F (2006) Actualisation de l’etude hydrogeologique des nappes phreatiques d’el Hencha, djebeniana et el Amra : artographie, synthese, relation et gestion

  • Boughariou E, Bouri S, Khanfir H, Zarhloule Y (2013) Impacts of climate change on water resources in arid and semi-arid regions: Chaffar Sector, Eastern Tunisia. Desalin Water Treat 2013:1–12

    Google Scholar 

  • Campbell SDG, Merritt JE, Dochartaigh BEÓ, Mansour MM, Hughes AG, Fordyce FM, Entwisle DC, Monaghan AA, Loughlin SC (2010) 3D geological models and their hydrogeological applications: supporting urban development: a case study in Glasgow–Clyde, UK. Z Dtsch Ges Geowiss 161(2):51–262

    Google Scholar 

  • Carneiro JF, Boughriba M, Correia A, Zarhloule Y, Rimi A, El Houadi B (2009) Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model. Environ Earth Sci 61(2009):241–252

    Google Scholar 

  • Carrera-Hernandez JJ, Gaskin SJ (2008) Spatio-temporal analysis of potential aquifer recharge: Application to the Basin of Mexico. J Hydrol 353:228–246

    Article  Google Scholar 

  • Castany G (1982) Principes et méthodes de l’hydrogéologie. Université de Pierre et Marie Crue (Paris VI), Paris, p 233

    Google Scholar 

  • Castrignanò A, Goovaerts P, Lulli L, Bragato G (2000) A geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma 98:95–113

    Article  Google Scholar 

  • Cobaner M, Yurtal R, Dogan A, Motez LH (2012) Three dimensional simulation of sea water intrusion in coastal aquifers: A case studying the Goksu Deltaic Plainn. J Hydrol 464–465(2012):262–208

    Article  Google Scholar 

  • CRDA Sfax, Le rapport annuel de l’année (2010) par Khanfir H. C.R.D.A de Sfax, Arrondissement des eaux, CRDA Sfax, the annual report for the year 2010 by H. Khanfir, CRDA

  • Dages C, Voltz M, Bsaibes A, Prévot L, Huttel O, Louchart X, Garnier F, Negro S (2009) Estimating the role of a ditch network in groundwater recharge in a Mediterranean catchment using a water balance approach. J Hydrol 375(2009):498–512

    Article  Google Scholar 

  • DASSI L (2004) Etude hydrogéologique, hydrochimique et isotopique du bassin de Sbeitla (Tunisie centrale) - Etude de la zone non saturée.2004 p-95

  • ESRI. Environmental Systems Research Institute (1997) The Arc/Info Version 7. 1 Software Package Documentation. ESRI, Redlands

    Google Scholar 

  • Fogg GE, LaBolle EM, Weissman GS (1999) Groundwater vulnerability assessment: hydrologic perspective and example from Salinas Valley, California. Assessment of Non-point Source Pollution in the Vadose Zone. Geophysical Monograph, 108. American Geophysical Union, pp. 45–61

  • Freeze RA, Cherry JA (1979) Groundwater. Pub. Prentice-Hall, New Jersey

    Google Scholar 

  • Gaura S, Chaharb BR, Graillot D (2011) Combined use of groundwater modeling and potential zone analysis for management of groundwater. Int J Appl Earth Obs Geoinformation 13(2011):127–139

    Article  Google Scholar 

  • GDEM (2014) http://gdem.ersdac.jspacesystems.or.jp/index.jsp

  • Ghayoumiana J, Saravib MM (2007) Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. J Asian Earth Sci 30(2):364–374

    Article  Google Scholar 

  • Gotkowitz M (2010) Wisconsin Geological and Natural History Survey Educational Series 50-2 | 2010

  • Guadagnini L, Farina M, Simoni M (2002) Geostatistical modelling of a heterogeneous alluvial aquifer by indicator variables. IAHS-AISH Publ 277:115–121

    Google Scholar 

  • Hughes AG, Mansour MM, Robins NS (2008) Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeol J 16(5):845–854

    Article  Google Scholar 

  • Jackson CR, Meister R, Christel Prudhomme C (2011) Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. Journal of Hydrology, Volume 399 (1) – Mar 8, 2011

  • Jang CS, Chen SK, Kuo YM (2013) Applying indicator-based geostatistical approaches to determine potential zones of groundwater recharge based on borehole data. Catena 101(2013):178–187

    Article  Google Scholar 

  • Johnson NM, Dreiss SJ (1989) Hydrostratigraphic interpretation using indicator geostatistics. Water Resour Res 25(12):2501–2510

    Article  Google Scholar 

  • Kumar B, Kumar U (2011) Ground water recharge zonation mapping and modeling using Geomatics techniques. Int J Environ Sci 1(7):2011

    Google Scholar 

  • Lerner DN, Isaar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge IAH International Contributions to Hydrogeology, vol 8. Verlag Heinz Heise, Hannover

    Google Scholar 

  • Mansour MM, Hughes AG (2004) User’s manual for the distributed recharge model ZOODRM. British Geological Survey Internal Report, IR/04/150

  • Masciopinto C (2013) Management of aquifer recharge in Lebanon by removing seawater intrusion from coastal aquifers. J Environ Manag 130:306e312

    Article  Google Scholar 

  • MMA (2000) Libro blanco del agua en España. Dirección General de Obras Hidráulicas y Calidad del Agua e Ministerio de Medio. MMA, Madrid

    Google Scholar 

  • Morris DA, Johnson AI (1967) Summary of hydrologic and physical properties of rock and soil Banton, 1997 et Castany, 1982materials. U.S. Geological Survey Water Supply Paper 42

  • Murillo JM, Roncero FJ (2005) Natural recharge and simulation of the management using the model “ERAS”. Application to the Peñarrubia aquifer (Alicante). Bol Geol Min 116:97–112

    Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(2010):43–51

    Article  Google Scholar 

  • Pohlmann K, Hassan A, Chapman J (2000) Description of hydrogeologic heterogeneity and evaluation of radionuclide transport at an underground nuclear test. J Contam Hydrol 44(3):353–386

    Article  Google Scholar 

  • Ragab R, Bromley J, Dörflinger G, Katsikides S (2010) IHMS—integrated hydrological modelling system. Part 2. Application of linked unsaturated, DiCaSM and saturated zone, MODFLOW models on Kouris and Akrotiri catchments in Cyprus. Hydrol Process 24:2681–2692

    Article  Google Scholar 

  • Rahman MA, Rusteberg B, Gogu RC, Ferreira JPL, Sauter M (2012) A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. J Environ Manag 99(2012):61–75

    Article  Google Scholar 

  • Saidi S, Bouri S, Ben Dhia H (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59:1579–1588

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Sikdar PK, Chakraborty S, Enakshi A, Paul PK (2004) Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal—a GIS and remote sensing approach. J Spat Hydrol 4:1–24

    Google Scholar 

  • Singh RD, Kumar CP (2010) Impact of Climate Change on Groundwater Resources. National Institute of Hydrology, Roorkee, Uttarakhand, 2010

    Google Scholar 

  • Smida H (2003) Apport des Systemes d'Informations Geographiques pour l'Etude et la Gestion des Ressources en Eau: Application pour la Nappe de Chaffar – Sfax 2003

  • Smida H (2008) Apports des Systèmes d’Informations Géographiques (SIG) pour une approche intégrée dans l’étude et la gestion des ressources en eau des systèmes aquifères de la région de Sidi Bouzid (Tunisie centrale)

  • Sophocleous MA (1991) Combining the soil water balance and water table fluctuation methods to estimate natural groundwater recharge: Practical aspects. J Hydrol 124:229–241

    Article  Google Scholar 

  • Trabelsi R (2008) Contribution à l’étude de la salinisation des nappes Phréatiques côtières. Cas du système de Sfax-Mahdia

  • Trabelsi R, Zaïri M, Smida H, Ben Dhia H (2005) Salinisation des nappes côtières: cas de la nappe nord du Sahel de Sfax, Tunisie. Geoscience 337:515–524

    Article  Google Scholar 

  • Trevisani S, Fabbri P (2010) Geostatistical modeling of a heterogeneous site bordering the Venice lagoon, Italy. Ground Water 48(4):614–623

    Article  Google Scholar 

  • Tweed S, Leblanc M, Cartwright I, Guillaume FG, Leduc C (2011) Arid zone groundwater recharge and salinisation processes; an example from the Lake Eyre Basin, Australia. J Hydrol 408(2011):257–275

    Article  Google Scholar 

  • Voogd H (1983) Multi-Ctiteria Evaluation for Urban and Regional Planning. Pion, London

    Google Scholar 

  • Woldeamlak ST, Batelaan O, De Smedt F (2007) Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol J 15(2007):891–901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Boughariou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boughariou, E., Saidi, S., Barkaoui, A.E. et al. Mapping recharge potential zones and natural recharge calculation: study case in Sfax region. Arab J Geosci 8, 5203–5221 (2015). https://doi.org/10.1007/s12517-014-1512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1512-x

Keywords

Navigation