Skip to main content

Advertisement

Log in

Index of extraction of water surfaces from Landsat 7 ETM+ images

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The aim of this study was to develop an index of water surfaces (IWS) for separating the water surfaces from other types of land use, by using the images of Landsat 7 ETM+. The index was applied on four areas characterized by different types of land use from different regions in Algeria. The first is from the center of Algeria (Landsat ETM+ scene: 195−36 acquired March 24, 2001); the second is from the east of Algeria (Landsat ETM+ scene: 193−35 acquired March 24, 2000); the third is from the west of Algeria (Landsat ETM+ scene: 197−36 acquired February 16, 2000); and the fourth is from the south of Algeria (Landsat ETM + scene: 197−43 acquired February 16, 2000). The results showed that the application of the IWS on the different tested areas can distinguish clearly the surface water from the other land use (basin dams, wadis, Sebkha, and Chott). These findings indicated that this index can be used in the mapping of the water surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alanazi HA, Ghrefat HA (2013) Spectral analysis of multispectral Landsat 7 ETM + and ASTER data for mapping land cover at Qurayah Sabkha, Northern Saudi Arabia. J Indian Soc Remote Sens. doi:10.1007/s12524-013-0291-2

    Google Scholar 

  • Ardoin B (2004) Variabilité hyroclimatique et impacts sur les ressources en eau de grands bassins Hydrographiques en zone soudano-sahéliènne. These, Université Montpellier II

  • Asner GP (2004) Biophysical remote sensing signatures of arid and semiarid ecosystems. In: Ustin S (ed) Manual of remote sensing, vol 4, 3rd edn, Remote sensing for natural resource management and environmental monitoring. Wiley J, Sons, Hoboken, pp 53–109

    Google Scholar 

  • Bauer ME (1985) Spectral inputs to crop identification and condition assessment. Proc IEEE 73:1071–1085. doi:10.1109/PROC.1985.13238

    Article  Google Scholar 

  • Baumgardner MR, Silva LF, Biehl L, Stoner ER (1985) Reflectance properties of soils. In: Brady NC (ed) Advances in agronomy, vol 38. Academic, Orlando, pp 1–39

    Google Scholar 

  • Ben-Dor E, Irons JR, Epema G (1999) Soil reflectance. In: Rencz AN (ed) Manual of remote sensing, vol 3, Remote sensing for the earth sciences. Wiley J, Sons, New York, pp 111–188

    Google Scholar 

  • Brown DJ, Shepherd KD, Walsh MG, Mays MD, Reinsch TG (2006) Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132:273–290

    Article  Google Scholar 

  • Bryant RG (1996) Validated linear mixture modeling of Landsat TM data for mapping evaporite minerals on a playa surface: methods and application. Int J Remote Sens 17(2):315–330

    Article  Google Scholar 

  • Castañeda C, Herrero J, Casterad MA (2005) Facies identification within the playa lakes of the Monegros Desert, Spain, with field and satellite data. Catena 63:39–63

    Article  Google Scholar 

  • Chapman JE, Rothery DA, Francis PW, Pontual A (1989) Remote sensing of evaporite mineral zonation in salt flats (salars). Int J Remote Sens 10(1):245–255

    Article  Google Scholar 

  • Chuvieco E, Cocero D, Riaño D, Martin P, Martínez- Vega J, de la Riva J et al (2004) Combining NDVI and surface temperature for the estimation of live fuels moisture content in forest fire danger rating. Remote Sens Environ 92(3):322–331. doi:10.1016/j.rse.2004.01.019

    Article  Google Scholar 

  • Clark RN (1999) Spectroscopy of rocks and minerals and principles of spectroscopy. In: Rencz AN (ed) Manual of remote sensing, vol 3, Remote sensing for the earth sciences. Wiley J, Sons, New York, pp 111–188

    Google Scholar 

  • Crowley JK (1991) Visible and near-infrared (0.4–2.5 μm) reflectance spectra of playa evaporite minerals. J Geophys Res 96 (B10) 16: 231–240

  • Crowley JK (1993) Mapping playa evaporite minerals with AVIRIS data: a first report from Death Valley, California. Remote Sens Environ 44:337–356

    Article  Google Scholar 

  • Crowley JK, Hook SJ (1996) Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images. J Geophys Res 101(B1):643–660

    Article  Google Scholar 

  • Das S, Behera SC, Kar A, Narendra P, Guha S (1997) Hydro geomorphological mapping in ground water exploration using remotely sensed data — a case study in Keunjhar District, Orissa. J Indian Soc Remote Sens 25(4):247–260

    Article  Google Scholar 

  • Daughtry CS, Walthall CL, Kim MS, Brown de Colstoun E, McMurtrey JE (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74:229–239

    Article  Google Scholar 

  • Gao B-C (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266

    Article  Google Scholar 

  • Gao B-C, Goetz FH (1995) Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data. Remote Sens Environ 52:155–162

    Article  Google Scholar 

  • Ghrefat HA, Goodell PC (2011) Land cover mapping at Alkali Flat and Lake Lucero, White Sands, New Mexico, USA using multi-temporal and multi-spectral remote sensing data. Int J Appl Earth Obs Geoinf 13(4):616–625

    Article  Google Scholar 

  • Gomarasca MA (2009) Basics of geomatics. Milano, Italy

  • Hill J (1994) Spectral properties of soils and the use of optical remote sensing systems for soil erosion mapping. In: Bidoglio G, Stumm W (eds) Chemistry of aquatic systems: local and global perspectives. Kluwer Academic Publishers, Dordrecht, pp 497–526

    Chapter  Google Scholar 

  • Irons JR, Weismiller RA, Petersen GW (1989) Soil reflectance. In: Asrar G (ed) Theory and applications of optical remote sensing. Wiley J, Sons, New York, pp 66–101

    Google Scholar 

  • Kodikara RL, Woldai T, Ruitenbeek FJA, Kuria Z, Meer F, Shepherd KD, Hummel GJ (2011) Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi Area, Kenya. Int J Appl Earth Obs Geoinf 14(1):22–32

    Article  Google Scholar 

  • Leone AP, Sommer S (2000) Multivariate analysis of laboratory spectra for the assessment of soil development and soil degradation in the southern Apennines (Italy). Remote Sens Environ 72:346–359

    Article  Google Scholar 

  • Ma Z, Wang Y, Gan X, Li B, Cai Y, Chen J (2009) Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River estuary, China. Environ Manag 43:1187–1200

    Article  Google Scholar 

  • Oztan NS, Suzen ML (2011) Mapping evaporate minerals by ASTER. Int J Remote Sens 32(6):1651–1673

    Article  Google Scholar 

  • Peñuelas J, Filella I, Biel C, Serrano L, Save R (1993) The reflectance at the 950–970 nm region as an indicator of plant water status. Int J Remote Sens 14:1887–1905

    Article  Google Scholar 

  • Peñuelas J, Piñol J, Ogaya R, Filella I (1997) Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int J Remote Sens 18:2869–2875. doi:10.1080/014311697217396

    Article  Google Scholar 

  • Riaño D, Vaughan P, Zarco-Tejada E, Ustin PJ (2005) Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content. Analysis at leaf and canopy level. IEEE Trans Geosci Remote Sens 43:819–826

    Article  Google Scholar 

  • Ustin SL, Roberts DA, Pinzón J, Jacquemoud S, Gardner M, Scheer G, Castañeda CM, Palacios-Orueta A (1998) Estimating canopy water content of chaparral shrubs using optical methods. Remote Sens Environ 65:280–291

    Article  Google Scholar 

  • Ustin SL, Darling D, Kefauver S, Greenberg J, Cheng Y-B, Whiting ML (2004a) Remotely sensed estimates of crop water demand. In: S.P.I.E. The International Symposium on Optical Science and Technology. 49th Annual Meeting, Denver, CO, 2–6 August

  • Ustin SL, Jacquemoud S, Zarco-Tejada PJ, Asner G (2004b) Remote sensing of environmental processes, state of the science and new directions. In: Ustin SL (ed) Manual of remote sensing. Remote sensing for natural resource management and environmental monitoring, vol 4, ASPRS. Wiley, New York, pp 679–730

    Google Scholar 

  • Wakode HB, Dutta D, Desai VR, Baier K, Azzam R (2011) Morphometric analysis of upper catchment of Kosi River using GIS techniques. Arab J Geosci. doi:10.1007/s12517-011-0374-8

    Google Scholar 

  • Wakode HB, Baier K, Jha R, Azzam R (2013) Analysis of urban growth using Landsat TM/ETM data and GIS—a case study of Hyderabad. India Arab J Geosci. doi:10.1007/s12517-013-0843-3

    Google Scholar 

  • Wang J, Xu R, Yang S (2009) Estimation of plant water content by spectral absorption features centered at 1,450 nm and 1,940 nm regions. Environ Monit Assess 157:459–469

    Article  Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Harron J, Hu B, Noland TL, Goel N, Mohammed GH, Sampson P (2004a) Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies. Remote Sens Environ 89:189–199

    Article  Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Morales A, Berjon A, Aguera J (2004b) Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy crops. Remote Sens Environ 90:463–476

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hassani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, M., Chabou, M.C., Hamoudi, M. et al. Index of extraction of water surfaces from Landsat 7 ETM+ images. Arab J Geosci 8, 3381–3389 (2015). https://doi.org/10.1007/s12517-014-1475-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1475-y

Keywords

Navigation