Advertisement

Arabian Journal of Geosciences

, Volume 8, Issue 5, pp 2953–2965 | Cite as

Application of concentration–number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran

  • Abulfazl RahmatiEmail author
  • Peyman Afzal
  • Seyed Amir Abrishamifar
  • Behnam Sadeghi
Original Paper

Abstract

The aim of this study is to delineate Fe-mineralized zones utilizing concentration–number (C–N) and concentration–volume (C–V) fractal models in the Sheytoor iron deposit located in Central Iran. The C–N model reveals four mineralized zones characterized by Fe thresholds of 15.85, 43.65, and 57.54 %, which represent wall rocks (Fe <15.85 %), weakly mineralized zones (15.85–43.65 %), moderately mineralized zones (43.65–57.54 %), and highly mineralized zones (Fe >57.54 %). Results obtained by the C–V model depicted four Fe-mineralized zones defined by Fe thresholds of 26.3, 38.01, and 52.48 %, with zones <26.3 % Fe representing non-mineralized wall rocks and zones >52.48 % Fe show highly mineralized zones. Both the C–N and C–V multifractal models indicate that highly and moderately mineralized zones are situated in the central and NE parts of the area. Their results were compared with the geological model using logratio matrix. Thus, the results show that the highly and moderately mineralized zones derived via the C–N model are more accurate than the C–V model.

Keywords

Fractal models Concentration–number (C–N) Concentration–volume (C–V) Fe-mineralized zones Sheytoor 

Notes

Acknowledgments

The authors would like to thank Mr. Gholamreza Hashemi, manager of the Iranian iron exploration project in Iran Minerals Production & Supply Co. (IMPASCO), and Dr. M. R. Mahvi, executive manager of International Minerals Engineering Consultant Co. (IMECO), for authorizing the employment of the Sheytoor exploration data.

References

  1. Afzal P, Khakzad A, Moarefvand P, Rashidnejad Omran N, Esfandiari B, Fadakar Alghalandis Y (2010) Geochemical anomaly separation by multifractal modeling in Kahang (GorGor) porphyry system. Central Iran. J Geochem Explor 104:34–46Google Scholar
  2. Afzal P, Fadakar Alghalandis Y, Khakzad A, Moarefvand P, Rashidnejad Omran N (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108:220–232CrossRefGoogle Scholar
  3. Agterberg FP (1995) Multifractal modeling of the sizes and grades of giant and supergiant deposits. Int Geol Rev 37:1–8Google Scholar
  4. Agterberg FP, Cheng Q, Wright DF (1993) Fractal modeling of mineral deposits. In: Elbrond J, Tang X (eds) 24th APCOM symposium proceeding, Montreal, Canada, p 43–53Google Scholar
  5. Agterberg FP, Cheng Q, Brown A, Good D (1996) Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Comput Geosci 22:497–507CrossRefGoogle Scholar
  6. Bai J, Porwal A, Hart C, Ford A, Yu L (2010) Mapping geochemical singularity using multifractal analysis: application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. J Geochem Explor 104:1–11CrossRefGoogle Scholar
  7. Bolviken B, Stokke PR, Feder J, Jossang T (1992) The fractal nature of geochemical landscapes. J Geochem Explor 43:91–109CrossRefGoogle Scholar
  8. Bonyadi Z, Davidson GJ, Mehrabi B, Meffre S, Ghazban F (2011) Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry. Chem Geol 281:253–269CrossRefGoogle Scholar
  9. Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry, vol 11. Elsevier, Amsterdam, 351:ppGoogle Scholar
  10. Carranza EJM (2009) Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol Rev 35:383–400CrossRefGoogle Scholar
  11. Carranza EJM (2010) From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resour Geol 61:30–51CrossRefGoogle Scholar
  12. Carranza EJM (2011) Analysis and mapping of geochemical anomalies using logratio transformed stream sediment data with censored values. J Geochem Explor 110:167–185CrossRefGoogle Scholar
  13. Carranza EJM, Sadeghi M (2010) Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geol Rev 38:219–241CrossRefGoogle Scholar
  14. Carranza EJM, Owusu E, Hale M (2009) Mapping of prospectivity and estimation of number of undiscovered prospects for lode-gold, southwestern Ashanti Belt, Ghana. Mineral Deposita 44:915–938CrossRefGoogle Scholar
  15. Cheng Q (1999) Spatial and scaling modelling for geochemical anomaly separation. J Geochem Explor 65:175–194CrossRefGoogle Scholar
  16. Cheng Q (2000) Multifractal theory and geochemical element distribution pattern. Earth Sci- J China Univ Geosci 25(3):311–318Google Scholar
  17. Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev 32:314–324CrossRefGoogle Scholar
  18. Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130CrossRefGoogle Scholar
  19. Cox D, Singer D (1986) Mineral deposits models. U.S. Geological Survey Bulletin.1693:ppGoogle Scholar
  20. Daliran F, Heins-Guenter S (2005) Geology and metallogenesis of the phosphate and rare earth element resources of the Bafq iron-ore district, central Iran. Proceedings of the 20th World Mining Congress, Iran, pp 357–361Google Scholar
  21. David M (1970) Geostatistical ore reserve estimation. Elsevier, Amsterdam, p 283Google Scholar
  22. Davis JC (2002) Statistics and data analysis in geology, 3rd edn. John Wiley & Sons Inc, New YorkGoogle Scholar
  23. Deng J, Wang Q, Yang L, Wang Y, Gong Q, Liu H (2010) Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. J Geochem Explor 105:95–105Google Scholar
  24. Förster HJ, Jafarzadeh A (1994) The Bafq mining district in Central Iran - a highly mineralized Infracambrian volcanic field. Econ Geol 89:1697–1721Google Scholar
  25. Goncalves MA, Mateus A, Oliveira V (2001) Geochemical anomaly separation by multifractal modeling. J Geochem Explor 72:91–114CrossRefGoogle Scholar
  26. Hassanpour S, Afzal P (2013) Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arab J Geosci 6:957–970Google Scholar
  27. Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287CrossRefGoogle Scholar
  28. Jami M (2005) Geology, geochemistry & evolution of Esfordi phosphate (iron deposit, Bafq Area—Central Iran), Unpublished Ph.D thesis, University of New South Wales 384: ppGoogle Scholar
  29. Jami M, Dunlop AC, Cohen DR (2007) Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran. Econ Geol 102:1111–1128CrossRefGoogle Scholar
  30. Laznicka P (2005) Giant metallic deposits future sources of industrial metals. Springer Berlin Heidelberg, p 732Google Scholar
  31. Li C, Ma T, Shi J (2003) Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor 77:167–175Google Scholar
  32. Mandelbrot BB (1983) The fractal geometry of nature. W. H. Freeman, San Fransisco, p 468Google Scholar
  33. Mohammadi A, Khakzad A, Rashidnejad Omran N, Mahvi MR, Moarefvand P, Afzal P (2013) Application of number-size (N-S) fractal model for separation of mineralized zones in Dareh-Ashki gold deposit, Muteh Complex, Central Iran. Arab J Geosci 6:4387–4398CrossRefGoogle Scholar
  34. Monecke T, Gemmell JB, Monecke J (2001) Fractal distributions of veins in drill core from the Hellyer VHMS deposit, Australia: constraints on the origin and evolution of the mineralising system. Mineralium Deposita 36:406–415Google Scholar
  35. Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, The University of Western Australia, PerthGoogle Scholar
  36. Sadeghi B, Moarefvand P, Afzal P, Yasrebi AB, Daneshvar Saein L (2012) Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. J Geochem Explor 122:9–19Google Scholar
  37. Samani BA (1988) Metallogeny of the Precambrian in Iran. Precambrian Res 39:85–106CrossRefGoogle Scholar
  38. Shayestehfar MR, Zarrabi A, Sharafi A, Yazdi A (2006) Petrology, petrography and mineralographical studies of “Choghart Iron Ore Mine”, Bafgh area, Iran. Geochim Cosmochim Acta 70:A578CrossRefGoogle Scholar
  39. Spalla MI, Morotta AM, Gosso G (2010) Advances in interpretation of geological processes: refinement of multi-scale data and integration in numerical modelling. Geological Society, London, 240: ppGoogle Scholar
  40. Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading, MA, p 688Google Scholar
  41. Wang QF, Deng J, Liu H, Wang Y, Sun X, Wan L (2011) Fractal models for estimating local reserves with different mineralization qualities and spatial variations. J Geochem Explor 108:196–208CrossRefGoogle Scholar
  42. Yasrebi A, Afzal P, Wetherelt A, Foster P, Esfehanipour R (2012) Correlation between geology and concentration-volume fractal models: significance for Cu and Mo mineralized zones separation in the Kahang porphyry deposit (Central Iran). Geol Carpath 642:153–163Google Scholar
  43. Zuo R (2011) Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl Geochem 26:S271–S273Google Scholar
  44. Zuo R, Cheng Q, Xia Q (2009) Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor 102:37–43CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2014

Authors and Affiliations

  • Abulfazl Rahmati
    • 1
    Email author
  • Peyman Afzal
    • 1
    • 2
  • Seyed Amir Abrishamifar
    • 1
  • Behnam Sadeghi
    • 1
  1. 1.Department of Mining Engineering, Faculty of Engineering, South Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Camborne School of MinesUniversity of ExeterPenrynUK

Personalised recommendations