Skip to main content

Advertisement

Log in

Early Eocene paleosol developed from basalt in southeastern Australia: implications for paleoclimate

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Early Eocene Climate Optimum (EECO, 51–53 Ma) is one of several short-term greenhouse spikes punctuating long-term Cenozoic paleoclimatic cooling. This study characterized major element geochemical and mineral composition and micromorphological textures of the Ngaiur clay paleosol at Bridle Creek (Australia) formed in the early Eocene (∼52 Ma). The Ngaiur paleosol has unusually thick and strongly developed soil horizons. Gibbsite and kaolinite are the dominant minerals in the paleosol. The A horizon of the paleosol has a pectic microtexture dominated by sesquioxidic spherical micropeds. The content of iron oxides is the highest and skeleton grains of primary minerals are least abundant in the B horizon. A variety of weathering indices (including chemical index of alteration without potash, weathering index, and silica/sesquioxide ratio) are evidence of intense weathering. Alkalis and alkaline earths (Ca, Mg, K, and Na) were exhausted by weathering. Significant ferrallitization was observed with desilication of 85 % (Ti as immobile element). The paleosol is classified as an Oxisol, and is considered to have formed under a hot and humid tropical climate. Such a warm, wet paleoclimate at a paleolatitude of 57°S in the early Eocene (∼52 Ma) may be due to a greenhouse paleoclimatic anomaly at the time of the EECO oxygen isotope excursion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bain DC, Ritchie PFS, Clark DR, Duthie DML (1980) Geochemistry and mineralogy of weathered basalt from Morvern, Scotland. Mineral Mag 43:865–872

    Article  Google Scholar 

  • Bern CR, Chadwick OA, Hartshorn AS, Khomo LM, Chorover J (2011) A mass-balance model to separate and quantify colloidal and solute redistributions in soil. Chem Geol 282:113–119

    Article  Google Scholar 

  • Birkeland PW (1999) Soil and geomorphology. Oxford University Press, New York

    Google Scholar 

  • Bockheim JG, Gennadiyeu AN (2000) The role of soil-forming processes in the definition of taxa in soil taxonomy and the world soil reference base. Geoderma 95:53–72

    Article  Google Scholar 

  • Braun JJ, Pagel M, Herbillon A, Rosins C (1993) Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study. Geochim Cosmochim Acta 57:4419–4434

    Article  Google Scholar 

  • Brimhall GH, Lewis CJ, Ford C, Bratt J, Taylor G, Warin O (1991) Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in lateritization. Geoderma 51:51–91

    Article  Google Scholar 

  • Cao SG (1986) Micromorphology of red soil in China. Soil Spec Rep 40:1–28 (in Chinese)

    Google Scholar 

  • Che VB, Fontijn K, Ernst GGJ, Kervyn M, Elburg M, Ranst EV, Suh CE (2012) Evaluating the degree of weathering in landslide-prone soils in the humid tropics: the case of Limbe, SW Cameroon. Geoderma 170:378–389

    Article  Google Scholar 

  • Chesworth W, Dejou J, Larroque P (1981) The weathering of basalts and relative mobilities of the major elements at Belbex, France. Geochim Cosmochim Acta 45:1235–1243

    Article  Google Scholar 

  • Clechenko ER, Kelly DC, Harrington GJ, Stiles CA (2007) Terrestrial records of a regional weathering profile at the Paleocene–Eocene boundary in the Williston Basin of North Dakota. Geol Soc Am Bull 119:428–442

    Article  Google Scholar 

  • Dessert C, Dupre B, Gaillardet J, Francois LM, Allegre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273

    Article  Google Scholar 

  • Dick DP, Schwertmann U (1996) Microaggregates from Oxisols and Inceptisols: dispersion through selective dissolutions and physico-chemical treatments. Geoderma 74:49–63

    Article  Google Scholar 

  • Driese SG, Jirsa MA, Ren MH, Brantley SL, Sheldon ND, Parker D, Schmitz M (2011) Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res 189:1–17

    Article  Google Scholar 

  • Eggleton RA, Foudoulis C, Varkevisser D (1987) Weathering of basalt: change in rock chemistry and mineralogy. Clay Clay Miner 35:161–169

    Article  Google Scholar 

  • Eswaran H (1972) Micromorphological indicators of pedogenesis in some tropical soils derived from basalts from Nicaragua. Geoderma 7:15–31

    Article  Google Scholar 

  • Eswaran H, Stoops G, Sys C (1977) The micromorphology of gibbsite forms in soils. J Soil Sci 28:136–143

    Article  Google Scholar 

  • Ezzaïm A, Turpault MP, Ranger J (1999) Quantification of weathering processes in an acid brown soil developed from tuff (Beaujolais, France). II. Soil formation. Geoderma 87:155–177

    Article  Google Scholar 

  • Genise JF, Bellosi ES, Verde M, González MG (2011) Large ferruginized palaeorhizospheres from a Paleogene lateritic profile of Uruguay. Sediment Geol 240:85–96

    Article  Google Scholar 

  • Ghosh P, Sayeed MRG, Islam R, Hundekari SM (2006) Inter-basaltic clay (bole bed) horizons from Deccan traps of India: implications for palaeo-weathering and palaeo-climate during Deccan volcanism. Palaeogeogr Palaeoclimatol Palaeoecol 242:90–109

    Article  Google Scholar 

  • Goulart AT, Fabris JD, De Jesus Filho ME, Coey JMD, Da Costa GM, De Grave E (1998) Iron oxides in a soil developed from basalt. Clay Clay Miner 46:369–378

    Article  Google Scholar 

  • Hill IG, Worden RH, Meighan IG (2000a) Geochemical evolution of a palaeolaterite: the interbasaltic formation, Northern Ireland. Chem Geol 166:65–84

    Article  Google Scholar 

  • Hill IG, Worden RH, Meighan IG (2000b) Yttrium: the immobility–mobility transition during basaltic weathering. Geology 28:923–926

    Article  Google Scholar 

  • Huang CM, Gong ZT (2000) Pedogenesis and development of mountain soils in Jianfengling Mountain Area. J Mt Sci 18:193–200 (in Chinese with English Abstract)

    Google Scholar 

  • Huang CM, Gong ZT, Yang DY (2002) Genesis of soils derived from basalt in northern Hainan Island II. Iron oxides. Acta Pedol Sin 39:449–458 (in Chinese with English Abstract)

    Google Scholar 

  • Huang CM, Gong ZT, He YR (2004) Elemental geochemistry of a soil chronosequence on basalt on Northern Hainan Island, China. Chin J Geochem 23:245–254

    Article  Google Scholar 

  • Idnurm M (1985) Late Mesozoic and Cenozoic palaeomagnetism of Australia. I. A redetermined apparent polar wander path. Geophys J R Astron Soc 83:399–418

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Jutras P, Hansley JJ, Quillan RS, Leforte MJ (2012) Intra-basaltic soil formation, sedimentary reworking and eodiagenetic K-enrichment in the Middle to Upper Ordovician Dunn Point Formation of eastern Canada: a rare window into early Palaeozoic surface and near-surface conditions. Geol Mag 149:798–818

    Article  Google Scholar 

  • Kraus MJ, Riggins S (2007) Transient drying during the Paleocene–Eocene Thermal Maximum (PETM): analysis of paleosols in the Bighorn Basin, Wyoming. Palaeogeogr Palaeoclimatol Palaeoecol 245:444–461

    Article  Google Scholar 

  • Krause JM, Bellosi ES, Raigemborn MS (2010) Lateritized tephric palaeosols from Central Patagonia, Argentina: a southern high-latitude archive of Palaeogene global greenhouse conditions. Sedimentology 57:1721–1749

    Article  Google Scholar 

  • Langley-Turbaugh SJ, Bockheim JG (1998) Mass balance of soil on late Quaternary marine terraces in coastal Oregon. Geoderma 84:265–288

    Article  Google Scholar 

  • Ma L, Chabaux F, Pelt E, Granet M, Sak PB, Gaillardet J, Lebedeva M, Brantley SL (2012) The effect of curvature on weathering rind formation: evidence from uranium-series isotopes in basaltic andesite weathering clasts in Guadeloupe. Geochim Cosmochim Acta 80:92–107

    Article  Google Scholar 

  • Mack GH, James WC (1994) Paleoclimate and global distribution of paleosols. J Geol 102:360–366

    Article  Google Scholar 

  • Marin-Spiotta E, Chadwick OA, Kramer M, Carbone MS (2011) Carbon delivery to deep mineral horizons in Hawaiian rain forest soils. J Geophys Res Biogeosci 116, G03011

    Article  Google Scholar 

  • Maynard JB (1992) Chemistry of modern soils as a guide to interpreting Precambrian paleosols. J Geol 100:279–289

    Article  Google Scholar 

  • Merrits DJ, Chadwick DA, Hendricks DM, Brimhall GH, Lewis CJ (1992) The mass balance of soil evolution on late Quaternary marine terraces, northern California. Geol Soc Am Bull l04:1456–1470

    Article  Google Scholar 

  • Mitchell RL, Sheldon ND (2009) Weathering and paleosol formation in the 1.1 Ga Keweenawan Rift. Precambrian Res 168:271–283

    Article  Google Scholar 

  • Nesbitt HW, Wilson RE (1992) Recent chemical weathering of basalts. Am J Sci 292:740–777

    Article  Google Scholar 

  • Nieuwenhuyse A, Van Breemen N (1997) Quantitative aspects of weathering and neoformation in selected Costa Rican Volcanic Soils. Soil Sci Soc Am J 61:1450–1458

    Article  Google Scholar 

  • Pillans B (1997) Soil development at snail’s pace: evidence from a 6 Ma soil chronosequence on basalt in north Queensland, Australia. Geoderma 80:117–128

    Article  Google Scholar 

  • Porder S, Hilley GE, Chadwick OA (2007) Chemical weathering, mass loss, and dust inputs across a climate by time matrix in the Hawaiian Islands. Earth Planet Sci Lett 258:414–427

    Article  Google Scholar 

  • Price RC, Gray CM, Wilson RE, Taylor SR (1991) The effect of weathering on rare-earth element, Y and Ba abundances in Tertiary basalts from southeastern Australian. Chem Geol 93:245–265

    Article  Google Scholar 

  • Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM, Schouten S, Bendle JA, Röhl U, Tauxe L, Raine JI, Huck CE, Van De Flierdt T, Jamieson SSR, Stickley CE, Van De Schootbrugge B, Escutia C, Brinkhuis H, Integrated Ocean Drilling Program Expedition 318 Scientists (2012) Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488:73–77

    Article  Google Scholar 

  • Rasmussen C, Dahlgren RA, Southard RJ (2010) Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA. Geoderma 154:473–485

    Article  Google Scholar 

  • Retallack GJ (1991a) Untangling the effects of burial alteration and ancient soil formation. Annu Rev Earth Planet Sci 19:183–206

    Article  Google Scholar 

  • Retallack GJ (1991b) Miocene paleosols and ape habitats of Pakistan and Kenya. Oxford University Press, New York

    Google Scholar 

  • Retallack GJ (1992) Paleosols and changes in climate and vegetation across the Eocene-Oligocene boundary. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 383–398

    Google Scholar 

  • Retallack GJ (1997) A colour guide to paleosols. John Wiley and Sons, Chichester

    Google Scholar 

  • Retallack GJ (2001) Soils of the past: an introduction to paleopedology. Oxford Blackwell Science Ltd, Oxford

    Book  Google Scholar 

  • Retallack GJ (2008) Cool-climate or warm-spike lateritic bauxites at high latitudes. J Geol 116:558–570

    Article  Google Scholar 

  • Retallack GJ (2010) Lateritization and bauxitization events. Econ Geol 105:655–667

    Article  Google Scholar 

  • Retallack GJ, Tanaka S, Tate T (2002) Late Miocene advent of tall grassland paleosols in Oregon. Palaeogeogr Palaeoclimatol Palaeoecol 183:329–354

    Article  Google Scholar 

  • Rettig SL, Marinenko JW, Khoury HN, Jones BF (1983) Comparison of rapid methods for chemical analysis of milligram samples of ultrafine clays. Clay Clay Miner 31:440–446

    Article  Google Scholar 

  • Roach IC (2004) Mineralogy, textures and P-T relationships of a suite of xenoliths from the Monaro Volcanic Province, New South Wales, Australia. J Petrol 45:739–758

    Article  Google Scholar 

  • Rye R, Holland HD (2000) Geology and geochemistry of paleosols developed on the Hekpoort Basalt, Pretoria Group, South Africa. Am J Sci 300:85–141

    Article  Google Scholar 

  • Sanematsu K, Moriyama T, Sotouky L, Watanabe Y (2011) Mobility of rare earth elements in basalt-derived laterite at the Bolaven Plateau, southern Laos. Resour Geol 61:140–158

    Article  Google Scholar 

  • Schwartmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. SSSA Book Series No.1, Soil Science Society of America, Madison, pp 379–438

  • Sharp KR (2004) Cenozoic volcanism, tectonism and stream derangement in the Snowy Mountains and northern Monaro of New South Wales. Aust J Earth Sci 51:67–83

    Article  Google Scholar 

  • Sheldon ND (2003) Pedogenesis and geochemical alteration of the Picture Gorge subgroup, Columbia River Basalt, Oregon. Geol Soc Am Bull 115:1377–1387

    Article  Google Scholar 

  • Sheldon ND, Retallack GJ (2001) Equation for compaction of paleosols due to burial. Geology 29:247–250

    Article  Google Scholar 

  • Sheldon ND, Tabor NJ (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci Rev 95:1–52

    Article  Google Scholar 

  • Sheldon ND, Retallack GJ, Tanaka S (2002) Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. J Geol 110:687–696

    Article  Google Scholar 

  • Singer A, Ben-Dor E (1987) Origin of red clay layers interbedded with basalts of the Golan Heights. Geoderma 39:293–306

    Article  Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. US Department of Agriculture Soil Conservation Service, Washington DC

    Google Scholar 

  • Srivastava P, Sangode SJ, Meshram DC, Gudadhe SS, Nagaraju E, Kumar A, Venkateshwarlu M (2012) Paleoweathering and depositional conditions in the inter-flow sediment units (bole beds) of Deccan Volcanic Province, India: a mineral magnetic approach. Geoderma 177(178):90–109

    Article  Google Scholar 

  • Stefánsson A, Gíslason SR (2001) Chemical weathering of basalts, southwest Iceland: effect of rock crystallinity and secondary minerals on chemical fluxes to the ocean. Am J Sci 301:513–555

    Article  Google Scholar 

  • Tabor NJ, Montañez IP, Zierenberg R, Currie BS (2004) Mineralogical and geochemical evolution of a basalt-hosted fossil soil (Late Triassic, Ischigualasto Formation, northwest Argentina): potential for paleoenvironmental reconstruction. Geol Soc Am Bull 116:1280–1293

    Article  Google Scholar 

  • Taylor G, Truswell EM, Mcqueen KG, Brown MC (1990) Early Tertiary palaeogeography, landform evolution and palaeoclimate of the southern Monaro NSW, Australia. Palaeogeogr Palaeoclimatol Palaeoecol 78:109–134

    Article  Google Scholar 

  • Taylor G, Eggleton RA, Holzhauer CC, Maconachie LA, Gordon M, Brown MC, Mcqueen KG (1992) Cool climate lateritic and bauxitic weathering. J Geol 100:669–677

    Article  Google Scholar 

  • Torrent J, Schwertmann U, Schulze DG (1980) Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma 23:191–208

    Article  Google Scholar 

  • Torrent J, Schwertmann U, Fechter H, Alferez F (1983) Quantitative relationships between soil color and hematite content. Soil Sci l36:354–358

    Article  Google Scholar 

  • Ugolini FC, Dahlgren RA (2003) Soil development in volcanic ash. Global Environ Res 6:69–81

    Google Scholar 

  • Van Wambeke A (1992) Soils of the tropics: properties and appraisal. McGraw-Hill, New York

    Google Scholar 

  • Wu CF, Lu JG (1989) Genesis and classification of soils developed from basalts. Chin J Soil Sci 20:4–7 (in Chinese with English Abstract)

    Google Scholar 

  • Yapp CJ (2008) 18O/16O and D/H in goethite from a North American Oxisol of the Early Eocene climatic optimum. Geochim Cosmochim Acta 72:5838–5851

    Article  Google Scholar 

  • Yoo K, Amundson R, Heimsath AM, Dietrich WE, Brimhall GH (2007) Integration of geochemical mass balance with sediment transport to calculate rates of soil chemical weathering and transport on hillslopes. J Geophys Res 112, F02013

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  Google Scholar 

  • Zhang MK, Wilson MJ, He ZL, Duthie DML (1998) Mineralogical characteristics of some red soils in southern China. J Zhejiang Agric Univ 24:339–343

    Google Scholar 

  • Zhang GL, Pan JH, Huang CM, Gong ZT (2007) Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Rev Mex Cienc Geol 24:261–269

    Google Scholar 

Download references

Acknowledgements

This study was funded partly by the National Basic Research Program of China (grant no. 2012CB822003) and the National Natural Science Foundation of China (grant no. 41371225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengmin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Retallack, G.J. & Huang, C. Early Eocene paleosol developed from basalt in southeastern Australia: implications for paleoclimate. Arab J Geosci 8, 1281–1290 (2015). https://doi.org/10.1007/s12517-014-1328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1328-8

Keywords

Navigation