Skip to main content
Log in

A modified kernel-RX algorithm for anomaly detection in hyperspectral images

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The use of kernel-based methods has recently become a popular approach to many hyperspectral image applications such as anomaly detection (AD). A well-known kernel-based anomaly detector in hyperspectral images is the Kernel-Reed-Xiaoli (KRX) algorithm. This study aims at improving the performance of the original KRX. To meet this purpose, a modified version of the KRX that assumes a spherical covariance matrix for the background class is proposed. Performance comparison is accomplished using two real hyperspectral data sets that contain subpixel and multipixel targets. Experimental results demonstrate that the use of the modified KRX, compared to the original KRX, improves the detection and computational efficiency for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bajorski P, Ientilucci EJ, Schott JR (2004) Comparison of basis vector selection methods for target and background subspaces as applied to subpixel target detection. Proc SPIE 5425:97–108. doi: 10.1117/12.835956

    Article  Google Scholar 

  • Rajasimman Balasubramanian UAB, Saravanavel J, Gunasekaran S (2013) Ore mineral discrimination using hyperspectral remote sensing—a field-based spectral analysis. Arab J Geosci 6(12):4709–4716

    Article  Google Scholar 

  • Banerjee A, Burlina P, Diehl C (2006) A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans Geosci Remote 44(8):2282–2291. doi: 10.1109/TGRS.2006.873019

    Article  Google Scholar 

  • Basener WF, Messinger DW (2009) Enhanced detection and visualization of anomalies in spectral imagery. Shen, S.S. & Lewis, P.E. (eds.): Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, SPIE 7334. doi: 10.1117/12.818672

  • Camastra F (2002) Kernel methods for unsupervised learning, Ph. D. dissertation, University of Genova

  • Camps-Valls G, Bruzzone L (2009) Kernel methods for remote sensing data analysis. Wiley, New York

    Book  Google Scholar 

  • Carlotto MJ (2005) A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans Geosci Remote 43(2):374–387. doi: 10.1109/TGRS.2004.841481

    Article  Google Scholar 

  • Chang C-I (2005) Orthogonal subspace projection revisited: a comprehensive study and analysis. IEEE Trans Geosci Remote 43(3):502–518. doi: 10.1109/TGRS.2004.839543

    Article  Google Scholar 

  • Etteieb S, Louhaichi M, Kalaitzidis C, Gitas IZ (2012) Mediterranean forest mapping using hyper-spectral satellite imagery. Arab J Geosci 6(12):5017–5032

    Article  Google Scholar 

  • Goldberg H, Kwon H, Nasrabadi NM (2007) Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery. IEEE Geosci Remote Sens Lett 4(4):581–585. doi: 10.1109/LGRS.2007.903083

    Article  Google Scholar 

  • Heiden U, Heldens W, Roessner S, Segl K, Esch T, Mueller A (2012) Urban structure type characterization using hyperspectral remote sensing and height information. Landsc Urban Plan 105(4):361–375

    Article  Google Scholar 

  • Hoffbeck J, Landgrebe D (1996) Covariance matrix estimation and classification with limited training data. IEEE Trans Pattern Anal 18(7):763–767. doi: 10.1109/34.506799

    Article  Google Scholar 

  • Kwon H, Nasrabadi NM (2010) Optimal kernel bandwidth estimation for hyperspectral kernel-based anomaly detection. IGARSS. 2812 – 2815. doi: 10.1109/IGARSS.2010.5649775

  • Kwon H, Nasrabadi NM (2007) A comparative analysis of kernel subspace target detectors for hyperspectral imagery. EURASIP J Adv Signal Process 2007(1):193–193. doi: 10.1155/2007/29250

    Article  Google Scholar 

  • Kwon H, Nasrabadi NM (2005) Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote 43(2):388–397. doi: 10.1109/TGRS.2004.841487

    Article  Google Scholar 

  • Manolakis D, Shaw G (2002) Detection algorithms for hyperspectral imaging application. IEEE Signal Process Mag 19:29–43

    Article  Google Scholar 

  • Matteoli S, Carnesecchi F, Diani M, Corsini G (2007) Comparative analysis of hyperspectral anomaly detection strategies on a new high spatial and spectral resolution data set. SPIE 6748. doi: 10.1117/12.738062

  • Matteoli S, Diani M, Corsini G (2010) A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp Electron Syst Mag 25(7):5–28. doi: 10.1109/MAES.2010.5546306

    Article  Google Scholar 

  • Matteoli S, Diani M, Corsini G (2009) Different approaches for improved covariance matrix estimation in hyperspectral anomaly detection. Riunione Annuale GTTI: 1–8

  • Matteoli S, Veracini T, Diani M, Corsini G (2013) Models and methods for automated background density estimation in hyperspectral anomaly detection. IEEE Trans Geosci Remote 51(4):2837–2852. doi: 10.1109/TGRS.2012.2214392

    Article  Google Scholar 

  • Mei F, Zhao C, Huo H, Sun Y (2008) An adaptive kernel method for anomaly detection in hyperspectral imagery. in Proc. 2nd Int Symp Intell Inf Technol 874–878. doi: 10.1109/IITA.2008.106

  • Moguerza JM, Muñoz A (2006) Support vector machines with applications. Stat Sci 21(3):322–336

    Article  Google Scholar 

  • Moradizadeh M, Momeni M, Saradjian MR (2013) Estimation and validation of atmospheric water vapor content using a MODIS NIR band ratio technique based on AIRS water vapor products. Arab J Geosci 6(6):1799–1806

    Article  Google Scholar 

  • Nasrabadi NM (2008) Regularization for spectral matched filter and RX anomaly detector. Proc. SPIE6966, Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XIV, 696604. doi: 10.1117/12.773444

  • Playle N (2006) Detection of landmines using hyperspectral imaging. Proc. SPIE 6217, Detection and remediation technologies for mines and minelike targets XI, 62170A. doi: 10.1117/12.664044

  • Ranney KI, Soumekh M (2006) Hyperspectral anomaly detection within the signal subspace. IEEE Geosci Remote Sens Lett 3(3):312–316. doi: 10.1109/LGRS.2006.870833

    Article  Google Scholar 

  • Reed IS, Yu X (1990) Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans Acoust Speech 38(10):1760–1770. doi: 10.1109/29.60107

    Article  Google Scholar 

  • Saleh AM, Belal AB, Arafat SM (2013) Identification and mapping of some soil types using field spectrometry and spectral mixture analyses: a case study of North Sinai, Egypt. Arab J Geosci 6(6):1799–1806. doi: 10.1007/s12517-011-0501-6

    Article  Google Scholar 

  • Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge Univ. Press, Cambridge, U.K

    Book  Google Scholar 

  • Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge, MA

    Google Scholar 

  • Schweizer S, Moura JMF (2001) Efficient detection in hyperspectral imagery. IEEE Trans Image Process 10:584–597. doi: 10.1109/83.913593

    Article  Google Scholar 

  • Snyder D, Kerekes J, Fairweather I, Crabtree R, Shive J, and Hager S (2008) Development of a web-based application to evaluate target finding algorithms. Proceedings of the 2008 I.E. International Geoscience and Remote Sensing Symposium (IGARSS), 2: 915–918 (freely available data [online]: http://dirsapps.cis.rit.edu/blindtest/). doi: 10.1109/IGARSS.2008.4779144

  • Stein DWJ, Beaven SG, Ho LE, Winter EM, Schaum AP, Stocker AD (2010) Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag 19(1):58–69. doi: 10.1109/79.974730

    Article  Google Scholar 

  • Tax DMJ (2001) One-class classification, Ph.D. dissertation, Delft University of Technology

  • Tiwari S, Sanjeev A, Anh T (2008) FastKRX: a fast approximation for kernel RX anomaly detection. Proc SPIE 6953:695316. doi: 10.1117/12.779586

    Article  Google Scholar 

  • Webb AR, Copsey KD (2011) Statistical pattern recognition, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Wilson TA (1998) Automatic target cueing of hyperspectral image data. Ph.D. dissertation, Air Force Institute of Technology

Download references

Acknowledgments

The authors would like to thank the Digital Imaging and Remote Sensing group Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, for providing the Target Detection Test data sets, Dr. John P. Kerekes for his valuable help in providing truth locations of the blind test targets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barat Mojaradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khazai, S., Mojaradi, B. A modified kernel-RX algorithm for anomaly detection in hyperspectral images. Arab J Geosci 8, 1487–1495 (2015). https://doi.org/10.1007/s12517-013-1218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-1218-5

Keywords

Navigation