Arabian Journal of Geosciences

, Volume 7, Issue 12, pp 5333–5343 | Cite as

Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1:100,000 sheet, Central Iran

  • Mojtaba Shamseddin Meigoony
  • Peyman AfzalEmail author
  • Mehran Gholinejad
  • Amir Bijan Yasrebi
  • Behnam Sadeghi
Original Paper


The aim of this study is to delineate the Cu, Au, and Pb anomalies in Sarajeh 1:100,000 sheet located in Urumieh-Dokhtar ore belt, central Iran. The analyzed elements of stream sediment samples taken in the area can be classified into six groups (factors) by factor analysis. The concentration–area and number–size multifractal inverse distance weighted models were applied for recognition of the elemental thresholds which are similar in both used multifractal models. According to the thresholds, the elemental concentration distribution for Cu, Au, and Pb were divided to three lithological classifications, namely mainly c alkaline porphyry with Cu–Au mineralization, mafic and sedimentary rocks. The results illustrate that the major anomalies of Cu, Au, Pb and related factors are mostly located around intrusions, volcanics, and along NW–SE faults.


Multifractal inverse distance weighted (MIDW) Factor analysis Number–size (N–S) fractal model Concentration–area (C–A) fractal model Sarajeh 



The authors would like to thank Mr. Reza Zarinfar, the manager of Parsi Kan Kav Co., for authorizing the use of Sarajeh exploration data. Moreover, the authors would like to thank Dr. Renguang Zuo for his comments and valuable remarks.


  1. Afzal P, Fadakar Alghalandis Y, Khakzad A, Moarefvand P, Rashidnejad Omran N (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108:220–232CrossRefGoogle Scholar
  2. Afzal P, Fadakar Alghalandis Y, Khakzad A, Moarefvand P, Rashidnejad Omran N, Asadi Haroni H (2012) Application of power–spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. J Geochem Explor 112:131–138CrossRefGoogle Scholar
  3. Afzal P, Khakzad A, Moarefvand P, Rashidnejad Omran N, Esfandiari B, Fadakar Alghalandis Y (2010) Geochemical anomaly separation by multifractal modeling in Kahang (GorGor) porphyry system, Central Iran. J Geochem Explor 104:34–46CrossRefGoogle Scholar
  4. Agterberg FP, Cheng Q, Wright DF (1993) Fractal modeling of mineral deposits. In: Elbrond J, Tang X (eds) 24th APCOM symposium proceeding, Montreal, Canada. Canadian Institute of Mining, Metallurgy and Petroleum Engineering, Montreal, pp 43–53Google Scholar
  5. Agterberg FP (1995) Multifractal modeling of the sizes and grades of giant and supergiant deposits. Int Geol Rev 37:1–8CrossRefGoogle Scholar
  6. Agterberg FP (2007) Mixtures of multiplicative cascade models in geochemistry. Nonlinear Proc Geoph 14:201–209CrossRefGoogle Scholar
  7. Alavi M (1994) Tectonics of Zagros Orogenic belt of Iran, new data and interpretation. Tectonophysics 229:211–238CrossRefGoogle Scholar
  8. Allègre CL, Lewin E (1995) Scale law scaling laws and geochemical distributions. Earth Planet Sci Lett 132:1–13CrossRefGoogle Scholar
  9. Bai J, Porwal A, Hart C, Ford A, Yu L (2010) Mapping geochemical singularity using multifractal analysis: application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. J Geochernical Explor 104:1–11CrossRefGoogle Scholar
  10. Berberian M, King GC (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265CrossRefGoogle Scholar
  11. Bolviken B, Stokke PR, Feder J, Jossang T (1992) The fractal nature of geochemical landscapes. J Geochem Explor 43:91–109CrossRefGoogle Scholar
  12. Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry, vol 11. Elsevier, Amsterdam, pp 1–351Google Scholar
  13. Carranza EJM (2009) Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol Rev 35:383–400CrossRefGoogle Scholar
  14. Carranza EJM, Sadeghi M (2012) Primary geochemical characteristics of mineral deposits—implications for exploration. Ore Geol Rev 45:1–4CrossRefGoogle Scholar
  15. Cheng Q (1999) Spatial and scaling modeling for geochemical anomaly separation. J Geochem Explor 65:175–194CrossRefGoogle Scholar
  16. Cheng Q (2008) Modeling local scaling properties for multiscale mapping. Vadose Zone J 7:525–532CrossRefGoogle Scholar
  17. Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130CrossRefGoogle Scholar
  18. Dargahi S, Arvin M, Pan Y, Babaei A (2010) Petrogenesis of post-collisional a-type granitoid from the Urumieh-Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision. Lithos 115:190–204CrossRefGoogle Scholar
  19. Davis JC (2002) Statistics and data analysis in geology. Wiley, New York, pp 1–638Google Scholar
  20. Deng J, Wang Q, Yang L, Wang Y, Gong Q, Liu H (2010) Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. J Geochem Explor 105:95–105CrossRefGoogle Scholar
  21. Filzmoser P, Hron K, Reimann C (2009) Principal component analysis for compositional data with outliers. Environ Sci Technol 20(6):621–632Google Scholar
  22. Filzmoser P, Todorov V (2011) Review of robust multivariate statistical methods in high dimension. Anal Chim Acta 705:2–14CrossRefGoogle Scholar
  23. Gałuszk A (2007) A review of geochemical background concepts and an example using data from Poland. Environ Geol 52(5):861–870CrossRefGoogle Scholar
  24. Goncalves MA, Mateus A, Oliveira V (2001) Geochemical anomaly separation by multifractal modeling. J Geochem Explor 72:91–114CrossRefGoogle Scholar
  25. Grunsky EC, Drew LJ, Sutphin DM (2009) Process recognition in multi-element soil and stream-sediment geochemical data. Appl Geochem 24:1602–1616CrossRefGoogle Scholar
  26. Hashemi M, Afzal P (2012) Identification of geochemical anomalies by using of number–size (N–S) fractal model in Bardaskan area, NE Iran. Arab J Geosci. doi: 10.1007/s12517-012-0657-8 Google Scholar
  27. Hassanpour S, Afzal P (2013) Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arab J Geosci 6:957–970Google Scholar
  28. Hawkes HE, Webb JS (1962) Geochemistry in mineral exploration. Harper and Row, New York, pp 1–415Google Scholar
  29. Hawkes HE, Webb JS (1979) Geochemistry in mineral exploration, 2nd edn. Academic, New York, pp 1–657Google Scholar
  30. Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis, 5th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  31. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York, pp 1–487Google Scholar
  32. Krumbein WC, Graybill FA (1965) An introduction to statistical models in geology. McGraw-Hill, New YorkGoogle Scholar
  33. Li CJ, Ma TH, Shi JF (2003) Application of a fractal method relating concentration and distances for separation of geochemical anomalies from background. J Geochem Explor 77:167–175CrossRefGoogle Scholar
  34. Li C, Xu Y, Jiang X (1994) The fractal model of mineral deposits. Geology of Zhejiang 10:25–32 (In Chinese with English Abstract)Google Scholar
  35. Lima A, De Vivo B, Cicchella D, Cortini M, Albanese S (2003) Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy), Campania region. Appl Geochem 18(12):1853–1865CrossRefGoogle Scholar
  36. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, San Francisco, pp 1–468Google Scholar
  37. Meng X, Zhao P (1991) Fractal method for statistical analysis of geological data. Chinese J Geosci 2:207–211Google Scholar
  38. Mohammadi A, Khakzad A, Rashidnejad Omran N, Mahvi MR, Moarefvand P, Afzal P (2012) Application of number–size (N–S) fractal model for separation of mineralized zones in Dareh-Ashki gold deposit, Muteh Complex, Central Iran. Arab J Geosci. doi: 10.1007/s12517-012-0662-y Google Scholar
  39. Monecke T, Monecke J, Herzig PM, Gemmell JB, Monch W (2005) Truncated fractal frequency distribution of element abundance data: a dynamic model for the metasomatic enrichment of base and precious metals. Earth Planet Sci Lett 232:363–378CrossRefGoogle Scholar
  40. Muller J, Kylander M, Martinez-Cortizas A, Wüst RAJ, Weiss D, Blake K, Coles B, Garcia-Sanchez R (2008) The use of principle component analyses in characterizing trace and major elemental distribution in a 55 kyr peat deposit in tropical Australia: implications to paleoclimate. Geochim Cosmochim Ac 72:449–463CrossRefGoogle Scholar
  41. Pazand K, Hezarkhani A, Ataei M, Ghanbari Y (2011) Application of multifractal modeling technique in systematic geochemical stream sediment survey to identify copper anomalies: a case study from Ahar, Azarbaijan, Northwest Iran. Chem Erde 71:397–402CrossRefGoogle Scholar
  42. Rantitsch G (2000) Application of fuzzy clusters to quantify lithological background concentrations in stream-sediment geochemistry. J Geochem Explor 71:73–82CrossRefGoogle Scholar
  43. Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346:1–16CrossRefGoogle Scholar
  44. Rousseeuw P, Van Driessen K (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3):212–223CrossRefGoogle Scholar
  45. Sadeghi B, Moarefvand P, Afzal P, Yasrebi AB, Daneshvar Saein L (2012a) Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. J Geochem Explor, Special Issue “fractal/multifractal modelling of geochemical data”, 122:9–19Google Scholar
  46. Sadeghi B, Afzal P, Moarefvand P, KhodaShenas N (2012b) Application of concentration–area fractal method for determination of Fe geochemical anomalies and the background in Zaghia area, Central Iran. 34th International Geological Congress (IGC), Brisbane, AustraliaGoogle Scholar
  47. Sanderson DJ, Roberts S, Gumiel P (1994) A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain. Econ Geol 89:168–173CrossRefGoogle Scholar
  48. Shahabpour J (1994) Post-mineral brecciadyke from the Sar-Cheshmehporphyry copper deposit, Kerman, Iran. Explor Min Geol 3:39–43Google Scholar
  49. Shi J, Wang C (1998) Fractal analysis of gold deposits in China: implication for giant deposit exploration Earth Sciences. J China Univ Geosci 23:616–618 (In Chinese with English Abstract)Google Scholar
  50. Stanley CR, Sinclair AJ (1989) Comparison of probability plots and gap statistics in the selection of threshold for exploration geochemistry data. J Geochem Explor 32:355–357CrossRefGoogle Scholar
  51. Tehran Padir Co. (2005) Regional geochemical exploration report in Sarajeh 1:100000 sheet. Tehran Padir Co., TehranGoogle Scholar
  52. Tripathi VS (1979) Factor analysis in geochemical exploration. J Geochem Explor 11:263–275CrossRefGoogle Scholar
  53. Tukey JW (1997) Exploratory data analysis. Addison-Wesley, ReadingGoogle Scholar
  54. Turcotte DL (1986) A fractal approach to the relationship between ore grade and tonnage. Econ Geol 18:1525–1532Google Scholar
  55. Turcotte DL (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge, pp 1–398CrossRefGoogle Scholar
  56. Wang QF, Deng J, Wan L, Zhao J, Gong QJ, Yang LQ, Zhou L, Zhang ZJ (2008) Multifractal analysis of the element distribution in skarn-type deposits in Shizishan Orefield in Tongling area, Anhui province, China. Acta Geol Sin 82:896–905Google Scholar
  57. Yousefi M, Kamkar-Rouhani A, Carranza EJM (2012) Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J Geochem Explor 115:24–35CrossRefGoogle Scholar
  58. Zuo R (2011a) Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor 111:13–22CrossRefGoogle Scholar
  59. Zuo R (2011b) Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl Geochem 26:S271–S273CrossRefGoogle Scholar
  60. Zuo R, Cheng Q, Xia Q (2009) Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor 102:37–43CrossRefGoogle Scholar
  61. Zuo R, Xia Q (2009) Application fractal and multifractal methods to mapping prospectivity for metamorphosed sedimentary iron deposits using stream sediment geochemical data in eastern Hebei province, China. Geochim Cosmochim Ac 73:A1540–A1540Google Scholar

Copyright information

© Saudi Society for Geosciences 2013

Authors and Affiliations

  • Mojtaba Shamseddin Meigoony
    • 1
    • 3
  • Peyman Afzal
    • 1
    • 2
    Email author
  • Mehran Gholinejad
    • 1
  • Amir Bijan Yasrebi
    • 2
  • Behnam Sadeghi
    • 1
  1. 1.Department of Mining Engineering, South Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Camborne School of MinesUniversity of ExeterPenrynUK
  3. 3.Young Researchers Club, South Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations