Skip to main content
Log in

Serpentinization of mantle formations in the Mauritanides Belt: regions of Agane and Gouérarate (middle-western Mauritania)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Regions of Agane and Gouérarate represent an ancient fragment of ophiolitic suture localized in the axial area of the Mauritanides Belt. These two regions are characterized by the abundance of completely serpentinized formations. In this study, we present the first use of Raman spectroscopy for identifying the species of serpentine present in the Mauritanides Belt. Serpentinites of Agane are derived from refractory peridotites composed of dunites–harzburgites; however, there are also rare serpentinites derived from ultramafic cumulates. Antigorite represents the dominant species in the serpentinite. Furthermore, chrysotile is found as post-antigorite veins. These veins are post-obduction and mark the final phase of serpentinization. The abundance of antigorite and the absence of lizardite confirm that subduction was the environment of serpentinization in these two regions, and that “the oceanic opening” responsible for the formation of ophiolitic sutures in the Mauritanides Belt was limited. The term “serpentinite” is no longer applicable to the formations of Gouérarate. As a result, these formations correspond to old serpentinites transformed to birbirites which are in phase of transformation into laterites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andréani M, Mevel C, Boullier A, Escartin J (2007) Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochem Geophy Geosy 8(2):1–4

    Article  Google Scholar 

  • Auzende AL, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Miner 31:269–77

    Article  Google Scholar 

  • Barnes JD, Paulick H, Sharp Z, Bach W, Beaudoin G (2009) Stable isotope (δ18O, δ D, δ 37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209). Lithos 110(1–4):83–94

    Article  Google Scholar 

  • Berman RG, Engi M, Greenwood HJ, Brown TH (1986) Derivation of internally-consistent thermodynamic data by the technique of mathematical programming: a review with application to the system MgO-SiO2-H2O. J Petrol 27:1331–1364

    Article  Google Scholar 

  • Bouachrine L (1994) Problèmes des concentrations d’amiante liées aux serpentinisations. Application au complexe ophiolitique Protérozoïque Supérieur des Khzama (Siroua Nord, Anti-Atlas central, Maroc). Ph.D. Thesis, University of Nancy, France, 216 pp

  • Bromiley G, Pawley A (2003) The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH). The effects of Al3+ substitution on high pressure stability. Am Mineral 88(1):99–108

    Google Scholar 

  • Chiron JC (1973) Etude géologique de la chaîne des Mauritanides entre le parallèle de Moudjeria et le fleuve Sénégal (Mauritanie). Mém. BGRM, No 84: 282 pp

  • Dai JG, Wang CS, Hébert R, Santosh M, Li YL, Xu JY (2011) Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chem Geol 288:133–148

    Article  Google Scholar 

  • Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K (2010) In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem Geol 269:262–277

    Article  Google Scholar 

  • Deschamps F, Godard M, Guillot S, Chauvel C, Andreani M, Hattori K, Wunder B, France L (2012) Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: examples from Cuba and Dominican Republic. Chem Geol 312–313:93–117

    Article  Google Scholar 

  • Dia O (1984) La chaîne pan-africaine et hercynienne des Mauritanides face au bassin proterozoïque supérieur à dévonien de Taoudéni dans le secteur-clé de Méjéria (Taganet, Sud RIM); Lithostratigraphique et tectonique. Un exemple de tectoniques tangentielles superposées. Ph.D. Thesis, University of Aix-Marseille, France, 516 pp

  • Duparc L, Moly E, Borloz A (1927) Sur la Birbiriten une nouvelle roche. Compte Rendu des Séances de la Société de Physique et D’Histoire Naturelle de Genève 44:137–139

    Google Scholar 

  • Esteban J, Cuevas J, José M, Tubía JM, Velasco F, Vegas N (2011) Petrographical and mineralogical characteristics of birbirites from the Ronda peridotites (Betic Cordilleras). Geogaceta 50(1):39–42

    Google Scholar 

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506

    Article  Google Scholar 

  • Evans B, Johannes W, Oterdoom H, Trommsdorff V (1976) Stability of chrystotile and antigorite in the serpentine multisystem. Schweizerische Mineralogische und Petrographische Mitteilungen 56:79–93

    Google Scholar 

  • Groppo C, Rinaudo C, Cairo S, Gastaldi D, Compagnoni R (2006) Micro-Raman spectroscopy for quick and reliable identification of serpentinite minerals from ultramafics. Eur J Mineral 18:319–29

    Article  Google Scholar 

  • Guillot S, Hattori K, Agard P, Schwartz S, Vidal O (2009) Exhumation processes in oceanic and continental subduction contexts: a review. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Frontiers in Earth Sciences, Springer, p 175–205

  • Hermann J, Mnntener O, Scambelluri M (2000) The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics 327:225–238

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Kane M (1986) Sur les caractères ophiolitiques du complexe ultrabasique-basique du Protérozoïque des Mauritanides centrales. Métallogenèse et géochimie des indices de métaux associés et guides de prospection (pour une ophiolitisation au Précambrien). Unpublished Thesis, University of Nancy, France, 297 pp

  • Kodolányi J, Pettke T, Spandler C, Kamber BS, Gméling K (2012) Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J Petrol 53:235–270

    Article  Google Scholar 

  • Lahondére D, Roger J, Le Metour J, Donzeau M, Guillocheau F, Helm C, Thieblemont D, Cocherie A, Guerrot C (2005) Notice explicative des cartes géologiques à 1/200 000 et 1/500 000 de l’extrême sud de la Mauritanie. DMG, Ministère des Mines et de l’Industrie, Nouakchott, Report BRGM/RC-54273, France, 610 pp

  • Le Page A, Lecorche JP (1991) La chaîne des Mauritanides. Un bel exemple d’orogène polyphasé, panafricain à hercynien en Mauritanie. In: Caruba R, Dars R (ed) Géologie de la Mauritanie. Université de Nice; 1st edn, CRDP Nice, 321 pp

  • Lille R (1967) Etude géologique du Guidimaka (Mauritanie). Mém. BRGM, No. 55, 399 pp

  • Mével C (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Géoscience 335:825–852

    Article  Google Scholar 

  • Mcdonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • O’Hanley DS, Wicks F (1995) Conditions of formation of lizardite, chrysotile and antigorite, Cassiar, British Columbia. Can Mineral 33(4):753–773

    Google Scholar 

  • O’Hanley DS (1991) Fault-related phenomena associated with hydration and serpentine. Can Mineral 29:21–35

    Google Scholar 

  • O’Hanley DS (1996) Serpentinites, records of tectonic and petrological history. Oxford Monographs on Geology and Geophysics, 34, pp 277

    Google Scholar 

  • Ould Souelim M (1990) Les roches mafiques et ultramafiques du Guidimaka (Mauritanie) et les gisements de chromite associés. Unpublished Ph.D. Thesis, University of Nice, France, 333 pp

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J Petrol 39(9):1577–1618

    Article  Google Scholar 

  • Pitfield PEJ, Key RM, Waters CN, Hawkins MPH, Schofield DI, Loughlin S, Barnes RP (2004) Notice explicative des cartes géologiques et gîtologiques à 1/200 000 et 1/500 000 du Sud de la Mauritanie, vol 1. Direction des Mines et de l’Industrie, Nouakchott, 580 pp

    Google Scholar 

  • Remy P (1987) Le magmatisme basique des Mauritanides centrales: une ouverture océanique limitée d’âge protérozoïque supérieur en Afrique de l’Ouest. Ph.D. Thesis, University of Nancy, France, 281 pp

  • Renaud L (1957) Sur la position stratigraphique du falémien de Mauritanie. C.R. Acad. Sci. France, 245, 1638–1641

    Google Scholar 

  • Savov IP, Guggino S, Ryan JG, Fryer P, Mottl MJ (2005) Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP Sites 1200 and 778–779, South Chamorro and Conical Seamounts, In: Shinohara M., Salisbury M.H. and Richter C. (eds). Proceedings of the Ocean Drilling Program, Scientific Results, 195, 1–49

  • Scambelluri M, Müntener O, Ottolini L, Pettke TT, Vannucci R (2004a) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Plan Sci Lett 222(1):217–234

    Article  Google Scholar 

  • Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004b) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46(7):595–613

    Article  Google Scholar 

  • Schwartz S, Allemand P, Guillot S (2001) Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (Western Alps). Tectonophysics 342:193–206

    Article  Google Scholar 

  • Schwartz S, Guillot S, Tricart P, Bernet M, Jourdan S, Dumont T, Montagnac G (2012) Source tracing of detrital serpentinite in the Oligocene molasse deposits from the western Alps (Barrême basin): implications for relief formation in the internal zone. Geol Mag 149(05):841–856

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5212):858–861

    Article  Google Scholar 

  • Ulrich M (2010) Péridotites et serpentinites du complexe ophiolitique de la Nouvelle-Calédonie. Études pétrologiques, géochimiques et minéralogiques sur l’évolution d’une ophiolite de sa formation à son altération. Ph.D. Thesis, University of Nouvelle-Calédonie and University of Joseph Fourier de Grenoble, 216 pp

  • Wicks FJ, O'Hanley DS (1988) Serpentine minerals: structures and petrology. Rev Mineral Geochem 19:91–167

    Google Scholar 

  • Wunder B, Schreyer W (1997) Antigorite: high-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos 41:213–227

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Mr. Abdellah Moutaqi who gave us the opportunity to do chemical analyses in the Office National des Hydrocarbures et des Mines. We also thank Amal El Aabedy for her efforts and assistance in the accomplishment of Raman spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ould Moctar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moctar, D.O., Boushaba, A. & Dubois, M. Serpentinization of mantle formations in the Mauritanides Belt: regions of Agane and Gouérarate (middle-western Mauritania). Arab J Geosci 7, 1985–1992 (2014). https://doi.org/10.1007/s12517-013-0947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-0947-9

Keywords

Navigation