Skip to main content

Advertisement

Log in

Detection of chromite bearing mineralized zones in Abdasht ophiolite complex using ASTER and ETM+ remote sensing data

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Podiform chromite ore deposits in ultramafic parts of ophiolite rock complexes can be detected using remote sensing data. This study focuses on the discrimination of chromite bearing mineralized zones using Landsat TM and Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data in Abdasht ophiolite complex, south of Iran. Several image processing methods, including Log residual, Decorellation Stretch, Band ratio and Mixture-Tuned Matched-Filtering (MTMF) have been evaluated for lithological mapping using Landsat ETM and ASTER data. The outcome showed that TIR band ratios of ASTER can discriminate quartzite, carbonate and mafic–ultramafic rocks in the ophiolite complex. Log residual, Decorollation Stretch and MTMF methods were more capable than previous published ASTER methods specifically for lithological mapping at a regional scale. New geological map of Abdasht region was produced based on the interpretation of ASTER image processing results and field verification. Consequently, the proposed methods demonstrated the ability of ASTER and Landsat ETM data to provide information for detecting chromite host rock (serpentinized dunites) that is valuable for chromite prospecting in study area. Additionally, the techniques used in this study are subtle for exploration geologist and mine engineering to identify high-potential chromite-bearing zones in the ophiolite complex, minimizing costly and time-consuming field works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdeen M, Allison T, Abdelsalam MG (2001) Application of ASTER band-ratio images for geological mapping in arid regions; the Neoproterozoic Allaqi Suture Egypt. Abstr Prog Geol Soc Am 3(3):289

    Google Scholar 

  • Aboelkhair H, Yoshiki N, Yasushi W, Isao S (2010) Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt. J Afr Earth Sci 58(1):141–151

    Article  Google Scholar 

  • Abrams M (2000) The Advanced Spaceborne Thermal Emission and Reflection Radiometer (Aster) data products for the high spatial resolution imager on NASA’s Terra platform. Int J Remote Sens 21:847–859

    Google Scholar 

  • Abrams M, Hook SJ (1995) Simulated Aster data for geologic studies. IEEE Trans Geosci Remote Sens 33(3):692–699

    Article  Google Scholar 

  • Alavi M (1991) Tectonic of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238

    Article  Google Scholar 

  • Amer R, Kusky T, Ghulam A (2010) Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci 56:75–82

    Article  Google Scholar 

  • Azizi H, Tarverdi MA, Akbarpour A (2010) Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Adv Space Res 46:99–109

    Article  Google Scholar 

  • Bedini A (2011) Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Ore Geo Rev 47:60–73

    Google Scholar 

  • Behzadi H (1992) Study of chemichal composition of ophiolite complex in north of Baft. Ms thesis, University of Bahonar, Kerman ,Iran, pp. 75–145

  • Boardman JW, Kruse FA, Green RO (1998) Mapping target signatures via partial unmixing of AVIRIS data. Proceedings of the Fifth JPL Airborne Earth Science Workshop, Pasadena, CA, pp. 23–26

  • Gad S, Kusky T (2007) ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res 11:326–335

    Article  Google Scholar 

  • Gillespie AR, Matsunaga T, Rokugawa S, Hook SJ (1998) Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36:1113–1126

    Article  Google Scholar 

  • Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26(1):65–74

    Article  Google Scholar 

  • Hashim et al (2011) Processing and interpretation of Advanced Space Borne Thermal Emission and Reflection Radiometer (ASTER) data for lithological mapping in ophiolite complex. Int J Phys Sci 6(28)

  • Inzana J, Kusky T, Higgs G, Tucker R (2003) Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. J Afr Earth Sci 37:59–72

    Article  Google Scholar 

  • Iwasaki A, Tonooka H (2005) Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans Geosci Remote Sens 43:2747–2751

    Article  Google Scholar 

  • Khan SD, Mahmood K, Casey JF (2007) Mapping of Muslim Bagh ophiolite complex (Pakistan) Using new remote sensing and field data. J Asian Earth Sci 30:333–343

    Article  Google Scholar 

  • Kruse FA, Boardman JW (2000) Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing. Proceedings 2000 IEEE Aerospace Conference, Big Sky, MO, March 18–24

  • Kruse FA, Bordman JW, Huntington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41:1388–1400

    Article  Google Scholar 

  • Madani A, Emam A (2009) SWIR ASTER band ratios for lithological mapping and mineral exploration: a case study from El Hudi area, southeastern desert, Egypt. Arab J Geosci 4:45–52

    Article  Google Scholar 

  • Mc Call (1997) The geotectonic history of the Makran and adjacent areas of southern Iran. J Asian Earth Sci 15(6):517–531

    Article  Google Scholar 

  • Ninomiya Y (2003) A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. IEEE International Symposium on Geoscience and Remote Sensing Toulouse, France, pp. 1552–1554

  • Ninomiya Y (2004) Lithologic mapping with multispectral ASTER TIR and SWIR data. Proc SPIE 5234:180–190

    Article  Google Scholar 

  • Ninomiya Y et al (2005) Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens Environ 99(1–2):127–139

    Article  Google Scholar 

  • Pour AB, Hashim M (2011a) Spectral transformation of ASTER and the discrimination of hydrothermal alteration minerals in a semi-arid region SE Iran. Int J Phys Sci 6(8):2037–2059

    Google Scholar 

  • Pour BA, Hashim M (2011b) Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci 42:1309–1323

    Article  Google Scholar 

  • Pour BA, Hashim M (2012a) The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev 44:1–9

    Article  Google Scholar 

  • Pour BA, Hashim M (2012b) Identifying areas of high economic-potential copper mineralization using ASTER data in Urumieh-Dokhtar Volcanic Belt, Iran. Adv Space Res 49:753–769

    Article  Google Scholar 

  • Pour BA, Hashim M (2013) Fusing ASTER, ALI and Hyperion data for enhanced mineral mapping. International Journal of Image and Data Fusion. doi:10.1080/19479832.2012.753115

  • Pour AB, Hashim M, Marghany M (2011) Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. Int J Phys Sci 6(4):917–929

    Google Scholar 

  • Qari MHT, Madani A, Matsah MIM, Hamini Z (2008) Utilization of ASTER and LANDSAT data in geological mapping of basement rocks of Arafat area, Saudi Arabia. Arab J Sci Eng 33:99–116

    Google Scholar 

  • Qiu F, Abdelsalam M, Thakkar P (2006) Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt. J Afr Earth Sci 44:169–180

    Article  Google Scholar 

  • Rajendran S, Balamurugan G, Shankar K (2011) Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. J Asian Earth Sci 41:99–106

    Article  Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (Aster) data. Remote Sens Environ 84:350–366

    Article  Google Scholar 

  • Rowan LC, Mars JC, Simpson CJ (2005) Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sens Environ 99:105–126

    Article  Google Scholar 

  • Rowan L, Awrence C, Robert G, Schmidt MJC (2006) Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sens Environ 104:74–87

    Article  Google Scholar 

  • Sabzehei M, Watters M (1970) Preliminary report on the geology and petrography of the metamorphic and igneous rocks of central part of Neiriz. Geological Survey of Iran

  • Stoklin J (1974) Possible ancient continental margins in Iran. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, Berlin, pp 873–887

    Chapter  Google Scholar 

  • Thome K, Palluconi F, Takashima T, Masuda K (1998) Atmospheric correction of ASTER. IEEE Trans Geosci Remote Sens 36(4):1119–1211

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Baft Branch, Islamic Azad University, for financing and funding this research through Research University Grant. In addition, special thanks to Universiti Teknologi Malaysia (UTM) for supporting and providing equipment and information sources that assisted this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazlan Hashim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pournamdari, M., Hashim, M. Detection of chromite bearing mineralized zones in Abdasht ophiolite complex using ASTER and ETM+ remote sensing data. Arab J Geosci 7, 1973–1983 (2014). https://doi.org/10.1007/s12517-013-0927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-0927-0

Keywords

Navigation