Skip to main content
Log in

Globule-rich lavas in the Razjerd district, Qazvin, Iran: a unique volcanic fabric

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A hypocrystalline silica-rich (63–67 wt.% SiO2, dacitic composition) lava flow (called G-lava) in the subaerial eruptive sequence of the Alborz Mountains (Razjerd district, Qazvin Province) of northern Iran, contains abundant (40–50 vol.%) 0.1- to 5.0-cm globules set in a matrix of rather similar composition and microtexture. Numerous globules have coalesced, showing triple-point junctions with 120° angles. Both phases in the G-lava (globules and matrix) contain similar microphenocrysts (plagioclase, ortho- and clinopyroxene and magnetite) in a trachytic groundmass. However, their mesostasis differ in colour, in composition, in the amount of glass and their amount of volatiles and silica: in the globules the mesostasis is darker and richer in SiO2 but is volatile poor. Other volcanic materials in the same unit are very similar in composition to the G-lava. The globular fabric was formed with two phases: one poor in volatiles (the globules), the other rich in volatiles (the matrix). The globules are slightly more silicic (66.9 against 64.6 wt.% SiO2), more potassic (3.7 againt 2.8 wt.% K2O) and more viscous (of the order of 103 to 104) than the matrix outside the globules. It seems that the two phases (globules and matrix) with different silica and volatiles contents and thus different vesicularities, viscosities and densities, were produced in the dacitic melt due to temperature and pressure drop and magmatic degassing in the volcanic conduit involved fluid-melt exsolution processes. Some of the volatile-rich melt was probably frothy during eruption, producing volcanic bombs and scoria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderko A, Pitzer KS (1993) Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl–H2O above 573 K. Geochim Cosmochim Acta 57:1657–1680

    Article  Google Scholar 

  • Anderson AT (1979) Water in some hypersthenic magmas. J Geol 87:509–531

    Article  Google Scholar 

  • Arndt NT, Fowler AD (2004) Textures in komatiites and variolitic basalts. In: Eriksson P, Altermann W, Nelson D, Muller W, Catuneanu O (eds) The Precambrian Earth: tempos and events (Developments in Precambrian Geology), 12. Elsevier, Amsterdam. pp. 298–311

  • Arndt NT, Nisbet EG (eds) (1982) Komatiites. George Allen and Unwin, London, pp 19–28

    Google Scholar 

  • Asiabanha A, Ghasemi H, Meshkin M (2009) Paleogene continental-arc type volcanism in North Qazvin, North Iran: facies analysis and geochemistry. Neues Jahrbuch für Mineralogie Abhandlungen 186:201–214

    Article  Google Scholar 

  • Asiabanha A, Bardintzeff JM, Kananian A, Rahimi G (2012) Post-Eocene volcanics of the Abazar district, Qazvin, Iran: Mineralogical and geochemical evidence for a complex magmatic evolution. J Asian Earth Sci 45:79–94

    Article  Google Scholar 

  • Bardintzeff JM (1992) Magma mixing processes in volcanic contexts, a thermodynamical approach with the examples of St. Vincent Soufriere volcano, West Indies and Cerro Chiquito, Guatemala. Terra Nova 4:553–566

    Article  Google Scholar 

  • Botcharnikov RE, Behrens H, Holtz F, Koepke J, Sato H (2004) Sulfur and chlorine solubility in Mt. Unzen rhyodacitic melt at 850 °C and 200 MPa. Chem Geol 213:207–225

    Article  Google Scholar 

  • Bottinga YA, Weil DF (1972) The viscosity of magmatic silicate liquids: a model for calculation. Am J Sci 272:438–473

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Brögger WC (1890) Die Mineralien der Syenitpegmatitgänge der Südnorwegischen Augit- und Nephelin-syenite. Zeitschrift für Kristallographie und Mineralogie 16:1–63

    Google Scholar 

  • Charlier B, Grove TL (2012) Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib Mineral Petrol 164:27–44

    Article  Google Scholar 

  • Clark S, Spera FJ, Yuen DA (1987) Steady state double-diffusive convection in magma chambers heated from below. In: Mysen BO (ed) Magmatic processes: physicochemical principles. Geochemical Society, Special Publication, pp. 289–305

  • Clocchiatti R (1979) Découverte dans la mésostase des laves à affinité andésitique du Monte Arci (Sardaigne occidentale) de verres riches en titane et phosphore et élargissement du domaine d’immiscibilité entre liquides silicatés. Comptes Rendus de l’Académie des Sciences, Paris 289:607–610

    Google Scholar 

  • Corsaro RA, Mazzoleni P (2002) Textural evidence of peperites inside pillow lavas at Acicastello Castle Rock (Mt. Etna, Sicily). J Volcanol Geotherm Res 114:219–229

    Article  Google Scholar 

  • Creig JW (1927) Immiscibility in silicate melts. Am J Sci 13:133–154

    Article  Google Scholar 

  • Davidson J, Hassanzadeh J, Berzins R, Stockli DF, Bashukooh B, Turrin B, Pandamouz A (2004) The geology of Damavand Volcano, Alborz Mountains, Northern Iran. Geol Soc Am Bull 116:16–29

    Article  Google Scholar 

  • Donaire T, Sáez R, Pascual E (2002) Rhyolitic globular peperites from the Aznalcóllar mining district (Iberian Pyrite Belt, Spain): physical and chemical controls. J Volcanol Geotherm Res 114:119–128

    Article  Google Scholar 

  • Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288:446–450

    Article  Google Scholar 

  • Fowler AD, Jensen LS, Peloquin SA (1986) Varioles in Archean basalts: products of spherulitic crystallization. Canadian Mineralogists 25:275–289

    Google Scholar 

  • Fowler AD, Berger B, Shore M, Jones MI, Ropchan J (2002) Supercooled rocks: development and significance of varioles, spherulites, dendrites and spinifex in Archean volcanic rocks, Abitibi Greenstone Belt, Canada. Precambrian Res 115:311–328

    Article  Google Scholar 

  • Freundt A, Schmincke HU (1992) Mixing of rhyolite, trachyte and basalt magma erupted from a vertically and laterally zoned reservoir, composite flow P1, Gran Canaria. Contrib Mineral Petrol 112:1–19

    Article  Google Scholar 

  • Fröhlich F (1989) Deep-sea biogenic silica: new structural and analytical data from infrared analysis—geological implications. Terra Nova 1:267–273

    Article  Google Scholar 

  • Gélinas L, Brooks C, Trzcienski WE (1977) Archean variolites quenched immiscible liquids. Can J Earth Sci 13:210–230

    Article  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  • Halter WE, Webster JD (2004) The magmatic to hydrothermal transition and its bearing on ore-forming systems. Chem Geol 210:1–6

    Article  Google Scholar 

  • Hamilton DL, Freestone IC, Dawnson JB, Donaldson CH (1979) Origin of carbonatites by liquid immiscibility. Nature 279:52–54

    Article  Google Scholar 

  • Hosseini M (1988) Magmatic immiscibility in a dacitic lava. In: Proceedings of the 3rd Conference of Geological Society of Iran. (in Farsi)

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Article  Google Scholar 

  • Jerram DA, Stollhofen H (2002) Lava-sediment interaction in desert settings; are all peperitelike textures the result of magma-water interaction. J Volcanol Geotherm Res 114:231–249

    Article  Google Scholar 

  • Kratzmann DJ, Carey S, Scasso R, Naranjo JA (2009) Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile. Bull Volcanol 71:419–439

    Article  Google Scholar 

  • Kushiro I, Yoder HS Jr, Mysen BO (1976) Viscosities of basalt and andesite melts at high pressures. J Geophys Res 81:6351–6356

    Article  Google Scholar 

  • Lasaga AC, Kirkpatrick RJ (1981) Kinetics of geochemical processes. Mineralogical Society of America, pp. 1–398

  • Le Maitre RW, Streckeisen A, Zanetti B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sørensen H, Wooley AR (2002) Igneous rocks, a classification and glossary of terms. (Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks). Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • London D (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80:281–303

    Article  Google Scholar 

  • Merino E (1999) Origin of agates and other supposed vesicle fillings; an overlooked reaction to produce silica gels in basalt flows. EOS Trans Am Geophys Union 80:1122

    Google Scholar 

  • Merritt CA (1924a) The function of gels in the formation of pegmatites and of quartz and carbonate veins. M.Sc. thesis, University of Manitoba, Winnipeg, Manitoba, Canada

  • Merritt CA (1924b) The function of colloids in pegmatitic growths. Proc Trans R Soc Can 17:61–68

    Google Scholar 

  • Middlemost EAK (1989) Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol 77:19–26

    Article  Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwic, pp 230–249

    Google Scholar 

  • Peterson TD (1990) Petrology and genesis of natrocarbonatite. Contrib Mineral Petrol 105:143–155

    Article  Google Scholar 

  • Philpotts AR (1979) Silicate immiscibility in tholeiitic basalts. J Petrol 20:99–118

    Article  Google Scholar 

  • Roedder E (1951) Low temperature liquid immiscibility in the system K2O–FeO–Al2O3–SiO2. Am Mineral 36:282–286

    Google Scholar 

  • Roedder E (1978) Silicate liquid immiscibility in magmas and in the system K2O–FeO–Al2O3–SiO2: an example of serendipity. Geochim Cosmochim Acta 42:1597–1617

    Article  Google Scholar 

  • Roedder E (1979) Silicate liquid immiscibility in magmas. In: Yoder HS Jr (ed) The evolution of the igneous rocks. Fiftieth Anniversary Perspectives. Princeton University Press, Princeton, pp 15–57

    Google Scholar 

  • Roedder E, Stalder HA (1988) “Pneumatolysis” and fluid-indusion evidence for crystal growth from a vapour phase. Mem Geol Soc India 11:1–12

    Google Scholar 

  • Schreiber U, Anders D, Koppen J (1999) Mixing and chemical interdiffusion of trachytic and latitic magma in a subvolcanic complex of the Tertiary Westerwald (Germany). Lithos 46:695–714

    Article  Google Scholar 

  • Schumacher R, Schmincke HU (1995) Models for the origin of accretionary lapilli. Bull Volcanol 56:626–639

    Article  Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272:870–893

    Article  Google Scholar 

  • Shmulovich KI, Churakov SV (1998) Natural fluid phases at high temperatures and low pressures. J Geochem Explor 62:183–191

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Romano C, Carroll MR (2001) Volatile element zonation in Campanian Ignimbrite magmas (Phlegrean Fields, Italy): evidence from the study of glass inclusions and matrix glasses. Contrib Mineral Petrol 140:543–553

    Article  Google Scholar 

  • Taylor MC, Sheppard JB, Walker JN, Kleck WD, Wise MA (2002) Petrogenesis of rare-element granitic aplite–pegmatites: a new approach. International Mineralogical Association General Meeting Program with Abstracts, 18:260

  • Veksler IV (2004) Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chem Geol 210:7–31

    Article  Google Scholar 

  • Visser W, Koster van Gross AE (1979) Effects of P2O5 and TiO2 on liquid-liquid equilibria in the system K2O-FeO-Al2O3-SiO2. Am J Sci 279:970–988

    Article  Google Scholar 

  • Wohletz KH (1999) MAGMA: Calculates IUGS Volcanic Rock Classification, Densities, and Viscosities. Los Alamos National Laboratory computer code LA-CC 99–28, Los Alamos New Mexico

  • Wohletz KH, McQueen RG (1984) Experimental studies of hydromagmatic volcanism. In.: Studies in geophysics, explosive volcanism: inception, evolution, and hazards. National Academy Press, Washington, pp. 158–169

Download references

Acknowledgments

J. Barbarand, B. Bonin, A.R. McBirney, B. Platevoet, M.J. Rutherford and M. Nasrabadi are thanked for fruitful remarks. Reviews by two anonymous reviewers helped to improve greatly the manuscript. R. Pichon is thanked for SEM photos and analyses, and F. Fröhlich and P. Schmidt are thanked for Reflection IR spectrometry analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Asiabanha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asiabanha, A., Bardintzeff, J.M. Globule-rich lavas in the Razjerd district, Qazvin, Iran: a unique volcanic fabric. Arab J Geosci 7, 1907–1925 (2014). https://doi.org/10.1007/s12517-013-0842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-0842-4

Keywords

Navigation