Skip to main content
Log in

Estimation and validation of atmospheric water vapor content using a MODIS NIR band ratio technique based on AIRS water vapor products

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Atmospheric water vapor validation needs simultaneous, well-defined, and independent information which are not easily available causing limitations in the development of remote sensing water vapor retrieval algorithms. This study is concerned with the retrieval of total atmospheric water vapor content and its validation. A band ratio method has been used to estimate the water vapor content based on Moderate Resolution Imaging Spectroradiometer (MODIS) Near InfraRed (NIR) data. The method uses MODIS bands 17, 18, and 19 as NIR bands and band 2 to remove the land cover reflectance. Furthermore, the Atmospheric Infrared Sounder (AIRS) has been used for both algorithm development and analysis of the results. The method has been modified to take into account the dry condition of the central parts of Iran. Using some various datasets, the method is implemented and evaluated quantitatively. The validation of the water vapor estimates has been undertaken by an analysis of AIRS data. The validation results shows error as low as 9 % for the estimated water vapor using the MODIS NIR band ratio method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen HS (1996) Estimation of precipitable water vapour from NOAA–AVHRR data during the Hapex Sahel experiment. Int J Remote Sens 17:2783–2801

    Article  Google Scholar 

  • Aumann HH, Chahine MT, Gautier C, Goldberg MD, Kalnay E, McMillin LM, Revercomb H, Rosenkranz PW, Smith WL, Staelin DH, Strow LL, Susskind J (2003) AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens 41:248–253

    Article  Google Scholar 

  • Bevis M, Businger S, Herring T, Rocken C, Anthes R, Ware R (1992) GPS meteorology: remote sensing of the atmospheric water vapor using the global positioning system. J Geophys Res 97:75–94

    Google Scholar 

  • Carlson TN, Perry EM, Schmugge TJ (1990) Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields. Agric For Meteorol 52:45–69

    Article  Google Scholar 

  • Czajkowski KP, Goward SN, Shirey D, Walz A (2002) Thermal remote sensing of near-surface water vapor. Remote Sens Environ 79:253–265

    Article  Google Scholar 

  • Elliott WP, Gaffen DJ (1991) On the utility of radiosonde humidity archives for climate studies. Bull Amer Meteor Soc 72:1507–1520

    Article  Google Scholar 

  • Fetzer E, McMillin LM, Tobin D, Aumann HH, Gunson MR, McMillan WW, Hagan DE, Hofstadter MD, Yoe J, Whiteman DN, Barnes JE, Bennartz R, Vömel H, Walden V, Newchurch M, Minnett PJ, Atlas R, Schmidlin F, Olsen ET, Goldberg MD, Zhou S, Ding H, Smith WL, Revercomb H (2003) AIRS/AMSU/HSB validation. IEEE Trans Geosci Remote Sens 41:418–431

    Article  Google Scholar 

  • French AN, Norman JM, Anderson MC (2003) A simple and fast atmospheric correction for spaceborne remote sensing of surface temperature. Remote Sens Environ 87:326–333

    Article  Google Scholar 

  • Frouin R, Deschamps PY, Lecomte P (1989) Determination from space of atmospheric total water vapour amounts by differential absorption near 940 nm: theory and airborne verification. J Appl Meteorol 29(448):460

    Google Scholar 

  • Gao BC, Kaufman YJ (2003) Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J Geophys Res 108:4381–4389

    Article  Google Scholar 

  • Gao BC, Goetz FH, Westwater ER, Conel JE, Green RO (1993) Possible near-IR channels for remote sensing of precipitable water vapour from geostationary satellite platforms. J Appl Meteorol 32:1791–1801

    Article  Google Scholar 

  • Gettelman A, Weinstock EM, Fetzer EJ, Irion FW, Eldering A, Richard EC, Rosenlof KH, Thompson TL, Pittman JV, Webster CR, Herman RL (2004) Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments. Geophys Res Lett 31:L22107

    Article  Google Scholar 

  • Güldner J, Spänkuch D (2001) Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry. J Atmos Ocean Tech 18:925–933

    Article  Google Scholar 

  • Haan SD, Barlag S, Baltink HK, Debie F, Van Der Marel H (2004) Synergetic use of GPS water vapor and Meteosat images for synoptic weather forecasting. J Appl Meteor 43:514–518

    Article  Google Scholar 

  • Kern A, Bartholy J, Borbas EE, Barcza Z, Pongracz R, Ferencz C (2008) Estimation of vertically integrated water vapor in Hungary using MODIS imagery. Adv Space Res 41:1933–1945

    Article  Google Scholar 

  • King MD, Kaufman YJ, Menzel WP, Tanre D (1992) Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans Geosci Remote Sens 30:1–27

    Google Scholar 

  • Kumar S, Singh AK, Prasad AK, Singh RP (2010) Variability of GPS derived water vapor and comparison with MODIS data over the Indo-Gangetic Plains. Phys Chem Earth. doi:10.1016/j.pce.2010.03.040

  • Li J, Wolf W, Menzel WP, Zhang W, Huang HL, Achtor TH (2000) Global soundings of the atmosphere from ATOVS measurements: the algorithm and validation. J Appl Meteorol 39:1248–1268

    Article  Google Scholar 

  • Liu J, Liang H, Sun Z, Zhou Z (2006) Validation of the Moderate-Resolution Imaging Spectroradiometer precipitable water vapor product using measurements from GPS on the Tibetan Plateau. J Geophys Res 111:D14103

    Article  Google Scholar 

  • McMillin LM, Zhao J, Rama Varma Raja MK, Gutman SI, Yoe JG (2007) Radiosonde humidity corrections and potential Atmospheric Infrared Sounder moisture accuracy. J Geophys Res 112:D13S90.

  • Menzel WP, Seemann SW, Li J, Gumley LE (2002) MODIS Atmospheric Profile Retrieval Algorithm Theoretical Basis Document. MODIS ATBD, version 6.

  • Olsen ET, Fishbein E, Hearty T, Lee SY, Irion FW, Kahn B, Manning E, Blaisdell J, Susskind J, Iredell L, Barnet C, Maddy E, Rosenkranz P, McMillan WW, Knuteson R (2007) AIRS Version 5 Release Level 2 Standard Product QuickStart, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. http://disc.gsfc.nasa.gov/AIRS/documentation, last access 31/1/2009.

  • Peters G (2001) Ground based remote profiling of the atmosphere: demands, prospects and status. Phys Chem Earth B 26:175–180

    Article  Google Scholar 

  • Prigent C, Pardo JR, Rossow WB (2006) Comparisons of the millimeter and submillimeter bands for atmospheric temperature and water vapor soundings for clear and cloudy skies. J Appl Meteorol Climatol 45:1622–1633

    Article  Google Scholar 

  • Prince SD, Goetz SJ, Dubayah R, Czajkowski K, Thawley M (1998) Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using AVHRR satellite observations: validation of algorithms. J Hydrol 4:230–249

    Article  Google Scholar 

  • Rama Varma Raja MK, Gutman SI, Yoe JG, McMillin LM, Zhao J (2008) The validation of AIRS retrievals of integrated precipitable water vapor using measurements from a network of ground-based GPS receivers over the contiguous United States. J Atmos Ocean Tech 25:416–428

    Article  Google Scholar 

  • Sanders LC, Schott JR, Raquen R (2001) A VNIR/SWIR atmospheric correction algorithm for hyperspectral imagery with adjacency effect. Remote Sens Environ 78:252–263

    Article  Google Scholar 

  • Schroedter-Homscheidt M, Drews A, Heise S (2008) Total water vapor column retrieval from MSG–SEVIRI split window measurements exploiting the daily cycle of land surface temperatures. Remote Sens Environ 112:249–258

    Article  Google Scholar 

  • Sobrino JA, El Kharraz J, Li ZL (2003) Surface temperature and water vapor retrieval from MODIS data. Int J Remote Sens 24:5161–5182

    Article  Google Scholar 

  • Soden BJ, Lanzante JR (1996) An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor. J Clim 9:1235–1250

    Article  Google Scholar 

  • Stum J, Sicard P, Carrère L, Lambin J (2011) Using objective analysis of scanning radiometer measurements to compute the water vapor path delay for altimetry. IEEE Trans Geosci Remote Sens 49:3211–3224

    Article  Google Scholar 

  • Wan Z, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temperature measurement from space. IEEE Trans Geosci Remote Sens 34:892–905

    Article  Google Scholar 

  • Wolfe DE, Gutman SI (2000) Development of the NOAA/ERL ground-based GPS water vapor demonstration network: design and initial results. J Atmos Ocean Technol 17:426–440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Moradizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradizadeh, M., Momeni, M. & Saradjian, M.R. Estimation and validation of atmospheric water vapor content using a MODIS NIR band ratio technique based on AIRS water vapor products. Arab J Geosci 7, 1891–1897 (2014). https://doi.org/10.1007/s12517-013-0828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-0828-2

Keyword

Navigation