Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa

Abstract

Remote sensing methods enable the rapid and inexpensive mapping of surface geological and mineralogical features. This capability proves highly useful when working on isolated or inaccessible areas. In this study, several enhancements of Landsat Enhanced Thematic Mapper plus (i.e. band ratios, false colour composites and principal component analysis) were used and evaluated to obtain the best possible visualisation of iron deposits hosted in the Devonian sedimentary rocks of northwestern Africa. In particular, two test sites were chosen: southern Algeria (Djebilet area), where the literature mineralogical and geological data on iron mine fields were already available, and the Western Sahara (the southern flank of Tindouf Basin), which was investigated during a field campaign and was where the occurrence of an analogous sedimentary succession led us to hypothesise the possible presence of exploitable iron deposits. This work demonstrates the usefulness of multispectral imagery in the detection of iron-rich areas and establishes a full remote sensing procedure, which can be profitably applied to a wider region of Western Sahara and can provide interesting perspectives on the possibility of detecting new exploitable iron ore deposits in arid environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Al Rawashdeh S, Saleh B, Hamzah M (2006) The use of remote sensing technology in geological investigation and mineral detection in El Azraq-Jordan. Cybergeo Eur J Geogr Syst Modél Géostat 358:16

    Google Scholar 

  2. Alessandro V, Pieruccini U, Pranzini E, Righini G, Salvestrini L (1997) Elaborazione ed interpretazione di immagini Landsat TM per la discriminazione litologica in un area marginale dello "Zaire Craton" in Angola. Riv It di Telerilev 9:43–52

    Google Scholar 

  3. Aydal D, Arda E, Dumanliar Ö (2007) Application of the Crosta technique for alteration mapping of granitoidic rocks using ETM+ data: case study from eastern Tauride belt (SE Turkey). Int J Remote Sens 28:3895–3913

    Article  Google Scholar 

  4. Chavez PS, Berlin GL, Sowers LB (1982) Statistical method for selecting Landsat MSS ratios. J Appl Photogr Eng 8:23–30

    Google Scholar 

  5. Crosta AP, Moore JM (1989) Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: a prospecting case history in Greenstone Belt terrain. Proceedings of the 7th (ERIM) Thematic Conference: Remote Sensing for Exploration Geology, Calgary, 2–6 October, pp 1773–1187

  6. Dehnavi AG, Sarikhani R, Nagaraju D (2010) Image processing and analysis of mapping alteration zones in environmental research, East of Kurdistan, Iran. World App Sci J 11:278–283

    Google Scholar 

  7. Dogan HM (2008) Applications of remote sensing and Geographic Information Systems to assess ferrous minerals and iron oxide of Tokat province in Turkey. Int J Remote Sens 29:221–233

    Article  Google Scholar 

  8. Dogan HM (2009) Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing. J Earth Syst Sci 118:701–710

    Article  Google Scholar 

  9. Elsayed Zeinelabdein KA, Albiely AI (2008) Ratio image processing techniques: a prospecting tool for mineral deposits, Red Sea Hills, NE Sudan. Int Arch Photogramm Remote Sens Spat Inf Sci 37:1295–1298

    Google Scholar 

  10. Farrand WH (1997) Identification and mapping of ferric oxide and oxyhydroxide minerals in imaging spectrometer data of Summitville, Colorado, USA and the surrounding San Juan Mountains. Int J Remote Sens 18:1543–1552

    Article  Google Scholar 

  11. Ferrari MC (1992) Improved decorrelation stretching of TM data for geological applications: first results in Northern Somalia. Int J Remote Sens 13:841–851

    Article  Google Scholar 

  12. Guerrak S (1988a) Ordovician ironstone sedimentation in Ougarta Ranges: North Western Sahara (Algeria). J Afr Earth Sci 7:657–678

    Article  Google Scholar 

  13. Guerrak S (1988b) Geology of the Early Devonian oolitic iron ore of the Gara Djebilet field, Saharan Platform, Algeria. Ore Geol Rev 3:333–358

    Article  Google Scholar 

  14. Guerrak S (1991) Paleozoic patterns of oolitic ironstone sedimentation in the Sahara. J Afr Earth Sci 12:31–39

    Article  Google Scholar 

  15. Guerrak S, Chauvel JJ (1985) Les minéralisations ferriferes du Sahara Algérien. Le gisement de fer oolithique de Mecheri Abdelaziz (basin de Tindouf). Miner Deposita 20:249–259

    Article  Google Scholar 

  16. Howari FM, Baghdady A, Goodell PC (2007) Mineralogical and geomorphological characterization of sand dunes in the eastern part of United Emirates using orbital remote sensing integrated with field investigations. Geomorphology 83:67–81

    Article  Google Scholar 

  17. Hubbard B, Crowley JK (2005) Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: data dimensionality issues and solutions. Remote Sens Environ 99:173–186

    Article  Google Scholar 

  18. James HL, Van Houten FB (1979) Miocene goethitic and chamositic oolite: northeastern Colombia. Sedimentology 26:125–133

    Article  Google Scholar 

  19. Kaufmann H (1988) Mineral exploration along the Aqaba-Levant Structure by use of TM-data. Concepts, processing and results. Int J Remote Sens 9:1639–1658

    Article  Google Scholar 

  20. Kenea NH (1997) Improved geological mapping using Landsat TM data, Southern Red Sea Hills, Sudan: PC and IHS decorrelation stretching. Int J Remote Sens 18:1233–1244

    Article  Google Scholar 

  21. Kenea NH, Haenisch H (1996) Principal component analyses for lithologic and alteration mappings: examples from the Red Sea Hills, Sudan. Int Arch Photogramm Remote Sens Spat Inf Sci 31:271–275

    Google Scholar 

  22. Legrand P (1967) Le Dévonien du Sahara algérien. In: Oswald DH (ed) International Symposium of the Devonian System. Alta, Calgary, pp 245–284

    Google Scholar 

  23. Legrand P (1969) Découvert de graptolites entre Gara Djebilet et Aouinet el Egra (Synéclise de Tindouf, Sahara Algérien). Bull Soc Hist Nat Afr Nord Algerie 59:99–114

    Google Scholar 

  24. Lemoigne Y (1967) Reconnaissance paléobotanique dans le Sahara Occidental (Région de Tindouf et Gara Djebilet). Ann Soc Geol Nord Fr 87:31–38

    Google Scholar 

  25. Loughlin WP (1991) Principal component analysis for alteration mapping. Photogramm Eng Remote Sens 57:1163–1169

    Google Scholar 

  26. Lubeseder S, Redfern J, Boutib L (2009) Mixed siliciclastic–carbonate shelf sedimentation—Lower Devonian sequences of the SW Anti-Atlas, Morocco. Sed Geol 215:13–32

    Article  Google Scholar 

  27. Madani AA (2009) Utilization of Landsat ETM+ data for mapping gossans and iron rich zones exposed at Bahrah area, Western Arabian Shield, Saudi Arabia. J King Abdulaziz Univ Earth Sci 20:25–49

    Google Scholar 

  28. Patel N, Kaushal B (2011) Classification of features selected through Optimum Index Factor (OIF) for improving classification accuracy. J For Res 22:99–105

    Article  Google Scholar 

  29. Pease PP, Bierly GD, Tchakerian VP, Tindale NW (1999) Mineralogical characterization and transport pathways of dune sand using Landsat TM data, Wahiba Sand Sea, Sultanate of Oman. Geomorphology 29:235–249

    Article  Google Scholar 

  30. Potrel A, Pecaut J, Fanning CM, Auvray B, Burg JP, Caruba C (1996) Old terranes (3.5 Ga) in the West African Craton, Mauritania. J Geol Soc London 153:507–510

    Article  Google Scholar 

  31. Qaid AM, Basavarajappa HT (2008) Application of index factor technique to Landsat-7 data for geological mapping of North East of Hajjah, Yemen. Am-Eurasian J Sci Res 3:84–91

    Google Scholar 

  32. Rajendran S, Thirunavukkarasu A, Balamurugan G, Shankar K (2011) Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. J Asian Earth Sci 41:99–106

    Article  Google Scholar 

  33. Rajesh HM (2004) Application of remote sensing and GIS in mineral resource mapping—an overview. J Mineral Petrol Sci 99:83–103

    Article  Google Scholar 

  34. Rajesh HM (2008) Mapping Proterozoic unconformity-related uranium deposits in the Rockhole area, Northern Territory, Australia using Landsat ETM+. Ore Geol Rev 33:382–396

    Article  Google Scholar 

  35. Ramadan TM, Kotny A (2004) Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District, SE Desert, Egypt. J Afr Earth Sci 40:89–99

    Article  Google Scholar 

  36. Ready PJ, Wintz PA (1973) Information extraction, SNR improvement and data compression in multi-spectral imagery. IEEE Trans Commun 21:1123

    Article  Google Scholar 

  37. Rohrlich V, Price NB, Calvert SE (1969) Chamosite in the recent sediments of Loch Etvie, Scotland. J Sed Petrol 39:624–631

    Google Scholar 

  38. Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens Environ 84:350–366

    Article  Google Scholar 

  39. Saadi M, Hilali EA, Bensaïd M, Boudda A, Dahmani M (1985) "Carte Géologique du Maroc, echelle 1/1000000," Edition du Service Géologique du Maroc, Notes et Mémoires n° 260

  40. Sabins FF (1999) Remote sensing for mineral exploration. Ore Geol Rev 14:157–183

    Article  Google Scholar 

  41. Salem SM, Arafa SA, Ramadan TM, El Gammal ESA (2011) Exploration of copper deposits in Wadi El Regeita area, Southern Sinai, Egypt, with contribution of remote sensing and geophysical data. Arabian Journal of Geosciences. doi:10.1007/s12517-011-0346-z

  42. Shalaby MH, Bishta AZ, Roz ME, Zalaky MA (2010) Integration of geologic and remote sensing studies for the discovery of uranium mineralization in some granite plutons, Eastern Desert, Egypt. J King Abdulaziz Univ Earth Sci 21:1–25

    Article  Google Scholar 

  43. Siljestrom PA, Moreno A, Vikgren K, Caceres LM (1997) Technical note The application of selective principal component analysis (SPCA) to Thematic Mapper (TM) image for the recognition of geomorphologic features configuration. Int J Remote Sens 18:3843–3852

    Article  Google Scholar 

  44. Singh A, Harrison A (1985) Standardized principal components. Int J Remote Sens 6:883–896

    Article  Google Scholar 

  45. Tangestani MH, Moore F (2000) Iron oxides and hydroxyl enhancement using the Crosta method: a case study from the Zagros Belt, Fars Province, Iran. Int J Appl Earth Obs Geoinf 2:140–146

    Article  Google Scholar 

  46. Tangestani MH, Moore F (2002) Porphyry copper alteration mapping at the Mediuk area, Iran. Int J Remote Sens 23:4815–4825

    Article  Google Scholar 

  47. Villeneuve M (2005) Paleozoic basins in West Africa and Mauritanide thrust belt. J Afr Earth Sci 43:166–195

    Article  Google Scholar 

  48. Zumsprekel H, Prinz T (2000) Computer-enhanced multispectral remote sensing data: a useful tool for the geological mapping of Archean terrains in (semi)arid environments. Comput Geosci 26:87–100

    Article  Google Scholar 

Download references

Acknowledgments

This research was financed by Autostrade per L'Italia S.p.a. The authors are grateful to the staff of the SADR Government and to Fiorella Bendoni from NGO Ban Slout Larbi for providing general support during the field work. Dr. Patrizia Musina is acknowledged for the English revision. We are very grateful to Steve Drury, H.M. Rajesh, Prof. Biswajeet Pradhan and two anonymous reviewers for making many helpful suggestions that improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Ciampalini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ciampalini, A., Garfagnoli, F., Antonielli, B. et al. Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arab J Geosci 6, 4529–4546 (2013). https://doi.org/10.1007/s12517-012-0725-0

Download citation

Keywords

  • Iron
  • Western Sahara
  • Landsat 7 ETM+
  • Mineral detection
  • PCA
  • OIF