Arabian Journal of Geosciences

, Volume 6, Issue 9, pp 3469–3480 | Cite as

Suspended sediment load prediction of river systems: GEP approach

  • H. Md. Azamathulla
  • Yong Chong Cuan
  • Aminuddin Ab. Ghani
  • Chun Kiat Chang
Original Paper


This study presents gene expression programming (GEP), an extension of genetic programming, as an alternative approach to modeling the suspended sediment load relationship for the three Malaysian rivers. In this study, adaptive neuro-fuzzy inference system (ANFIS), regression model, and GEP approaches were developed to predict suspended load in three Malaysian rivers: Muda River, Langat River, and Kurau River [ANFIS (R 2 = 0.93, root mean square error (RMSE) = 3.19, and average error (AE) = 1.12) and regression model (R 2 = 0.63, RMSE = 13.96, and AE = 12.69)]. Additionally, the explicit formulations of the developed GEP models are presented (R 2 = 0.88, RMSE = 5.19, and AE = 6.5). The performance of the GEP model was found to be acceptable compare to ANFIS and better than the conventional models.


Muda River Langat River Kuaru River Suspended sediment load ANFIS GEP Regression 



The authors wish to express their sincere gratitude to Universiti Sains Malaysia for funding a research university grant to conduct this on-going research (PRE.1001/PREDAC/811077).


  1. Ab. Ghani A (1993) Sediment transport in sewers. PhD thesis, University of Newcastle upon Tyne, UKGoogle Scholar
  2. Azamathulla HMd, Ab. Ghani A (2011) Genetic programming for longitudinal dispersion coefficients in streams, Water Resour Manag 25(6):1537–1544Google Scholar
  3. Azamathulla HMd, Wu FC (2011) Support vector machine approach to for longitudinal dispersion coefficients in streams, Appl Soft Comput 11(2):2902–2905Google Scholar
  4. Azamathulla H Md., Aminuddin Ab. Ghani, Nor Azazi Zakaria, Chun Kiat Chang, and Zorkeflee Abu Hasan (2010) Genetic approach to predict sediment concentration for Malaysian rivers. International Journal of Ecological Economics & Statistics (IJEES) 16, W10.Google Scholar
  5. Azamathulla HMd, Ab. Ghani A, Zakaria NA (2007) An ANFIS based approach for predicting the scour below flip-bucket spillway, 2nd International Conference on Managing Rivers in 21st Century: solutions towards Sustainable River Basins (Rivers'07). Kuching, Sarawak, Malaysia, pp 522–525Google Scholar
  6. Azamathulla HMd, Ghani AAb, Zakaria NA, Chang CK, Hasan ZA (2010) Machine learning approach to predict sediment load—a case study, CLEAN—Soil, Air. Water12 38(10):969–976Google Scholar
  7. Azmathullah HMd, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of a ski-jump bucket. J Hydraul Eng 131(10):898–908CrossRefGoogle Scholar
  8. Bateni SM, Borghei SM, Jeng DS (2007a) Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Eng Appl Artif Intel 20:401–414CrossRefGoogle Scholar
  9. Bateni SM, Jeng DS, Melville BW (2007b) Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers. Adv Eng Software 28(2):102–111CrossRefGoogle Scholar
  10. Baylar A, Unsal M, Ozkan F (2011) GEP modeling of oxygen transfer efficiency prediction in aeration cascades. KSCE J Civ Eng 15(5):799–804CrossRefGoogle Scholar
  11. Brooks NH (1963) Calculation of suspended load from velocity and concentration parameters, Symposium 2.—Sediment in Streams, 229–237.Google Scholar
  12. Cevik A (2007) A new formulation for longitudinally stiffened webs subjected to patch loading. J Constr Steel Res 63(10):1328–1340CrossRefGoogle Scholar
  13. Chang FM, Simons DB and Richardson EV (1965) Total bed-material discharge in alluvial channels, U.S. Geol. Survey Water-Supply Paper, 1498-I, 23.Google Scholar
  14. Dogan E, Yuksel I, Kisi O (2007) Estimation of total sediment load concentration obtained by experimental study using artificial neural networks. Environ Fluid Mech 7:271–288CrossRefGoogle Scholar
  15. Einstein HA (1950) The bed-load function for sediment transportation in open channel flows, United States Department of Agriculture, Technical Bulletin No. 1026.Google Scholar
  16. Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13(2):87–129Google Scholar
  17. Fung R, Chen Y, Chen L, Tiang J (2005) A fuzzy expected value-based goal programing model for product planning using quality function deployment. Eng Optim 37(6):633–645CrossRefGoogle Scholar
  18. Gandomi AH, Alavi AH, Mirzahosseini MR, Moqhadas Nejad F (2011a) Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. J Mater Civ Eng ASCE 23(3):248–263CrossRefGoogle Scholar
  19. Gandomi AH, Tabatabaie SM, Moradian MH, Radfar A, Alavi AH (2011b) A new prediction model for load capacity of castellated steel beams. J Constr Steel Res Elsevier 67(7):1096–1105CrossRefGoogle Scholar
  20. Gandomi AH, Babanajad SK, Alavi AH, Farnam Y (2012) A novel approach to strength modeling of concrete under triaxial compression. J Mater Civ Eng, ASCE. doi: 10.1061/(ASCE)MT.1943-5533.0000494
  21. Guven A, Aytek A (2009) A new approach for stage-discharge relationship: Gene-expression programming, J Hydrol Eng 14(8):812–820CrossRefGoogle Scholar
  22. Guven A, Gunal M, (2008) A genetic programming approach for prediction of local scour downstream hydraulic structures. J Irrig and Drain Engrg 132(4):241Google Scholar
  23. Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. Man Cybern 23(3):665–685CrossRefGoogle Scholar
  24. Kayadelen C, Gunaydin O, Fener M, Demir A, Ozvan A (2009) Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Syst Appl 36(9):11814–11826CrossRefGoogle Scholar
  25. Kisi O, Emin KM, Sen Z (2006) River suspended sediment modeling using a fuzzy logic approach. Hydrol Process 20:4351–4362CrossRefGoogle Scholar
  26. Lane EW, Kalinske AA (1941) Engineering calculations of suspended sediment. Trans Am Geophys Union 22:603–607CrossRefGoogle Scholar
  27. Melesse AM, Ahmad S, McClain ME, Wang X, Lim YH (2011) Suspended sediment load prediction of river systems: an artificial neural network approach. Agr Water Manag 98(2011):855–866CrossRefGoogle Scholar
  28. Muñoz DG (2005) Discovering unknown equations that describe large data sets using genetic programming techniques, Master Thesis, Electronic Systems, Linköping Institute of Technology, LITH-ISY-EX-05/3697Google Scholar
  29. Ozger M, Sen Z (2007) Prediction of wave parameters by using fuzzy logic approach. Ocean Eng 34(3–4):460–469CrossRefGoogle Scholar
  30. Rouse H (1937) Modern conceptions of the mechanics of sediment suspension. Trans ASCE 102:463–543Google Scholar
  31. Sinnakaudan SK, Ab. Ghani A, Ahmad MSS, Zakaria, NA (2006) Multiple linear regression model for total bed material load prediction, J Hydraul Eng 132(5):521–528Google Scholar
  32. Teodorescu L, Sherwood D (2008) High energy physics event selection with gene expression programming. Comput Phys Commun 178(6):409–419CrossRefGoogle Scholar
  33. Turkmen I, Kerim G, Dervis K (2006) Genetic tracker with neural network for single and multiple target tracking. Neurocomputing 69(16–18):2309–2319CrossRefGoogle Scholar
  34. Van Rijn LC (1984) Sediment transport, part I: bed load transport. J Hydraul Eng 110(10):1431–1456Google Scholar
  35. Yang CT (1996) Sediment transport: theory and practice. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2012

Authors and Affiliations

  • H. Md. Azamathulla
    • 1
  • Yong Chong Cuan
    • 2
  • Aminuddin Ab. Ghani
    • 1
  • Chun Kiat Chang
    • 1
  1. 1.River Engineering and Urban Drainage Research Centre (REDAC)Universiti Sains MalaysiaNibong TebalMalaysia
  2. 2.School of Civil EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations