Skip to main content

Real surface conductivity component as indicator for the hydraulic conductivity

Abstract

Estimation of hydraulic conductivity from surface resistivity measurements is one of the most difficult and challenging hydrogeophysical targets. The promising side of this relation is the analogy between electric current flow and water flow, whereas the grand ambiguity is the non-dimensionality between both two quantities. Imaginary surface conductivity component is used recently to deduce the hydraulic conductivity via complex resistivity measurements. Since there are similar properties between imaginary (out-of-phase) and real (in-phase) surface conductivity components, the latter is used in this paper to predict the hydraulic conductivity. Two mathematical parameters were determined to express the electrical equivalent of hydraulic conductivity in sand and clay systems based on the mode of electrical double-layer formation in both systems. The reliability of the proposed method is tested through applying on two datasets representing sand and clay systems. The first dataset is a clean sand and gravel aquifer in the Keritis basin in Chania, Crete, Greece. The second is mostly clayey sand aquifer in Wadi El-Assuity, Egypt. Application of the present approach in these two cases resulted in promising nearly identical values with the measured hydraulic conductivity via pumping test or geometric hydraulic conductivity via grain size analysis.

أستخدام المركبة الحقيقية للتوصيل السطحى كمؤشر للتوصيل الهيدروليكي

يعد تقدير نفاذية المياه بأستخدام قياسات المقاومة الكهربية السطحية واحدا" من الأهداف الأكثر صعوبة وتحديا فى مجال الهيدروجيوفيزياء. إن الجانب الواعد فى هذه العلاقة هو التشابه بين تدفق التيار الكهربائي ، وتدفق المياه ، في حين أن الغموض الكبير هو عدم التشابة بين أبعاد كل منهما. إن المركبة التخيلية للتوصيل السطحى تستخدم في الآونة الأخيرة للاستدلال على نفاذية المياه عن طريق قياسات المقاومة النوعية المعقدة. ولأن هناك خصائص مماثلة بين المركبة التخيلية و المركبة الحقيقية، فقد استخدمت الأخيرة في هذه الورقة البحثية للتنبؤ بنفاذية المياه. تم التوصل الى معامليين رياضيين يعبران عن المكافئ الكهربى للموصلية الهيدروليكية في الرمل والطين بناءا" علي طبيعة التوصيل السطحى لكلا النظاميين. تم إختبارمصداقية الطريقة المقترحة من خلال التطبيق على مجموعتين من البيانات التي تمثل نظم الترسيبات الطينية والرملية. بيانات المجموعة الاولى هي لخزان من الرمال والحصى في جزيرة كريت - اليونان أما المجموعة الثانية فهي لخزان مكون في معظمه من رسوبيات طينية رملية فى وادي الأسيوطى - مصر.

إن تطبيق الطريقة المقترحة الحاليه فى هاتين المنطقتين قد أسفرت عن قيم متطابقة تقريبا للتوصيل الهيدروليكي المقاس عبر إختبار الضخ أوالمحسوب عبر تحليل حجم الحبيبات.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. American Institute of Mineral and Metal Engineering. Technical publication, 1442, Petroleum Technology, pp 8–13

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York, 764 pp

    Google Scholar 

  • Börner FD (1992) Complex conductivity measurements of reservoir properties. Proceedings of the Third European Core Analysis Symposium, Paris, pp 359–386

  • Börner FD (2006) Complex conductivity measurements. In: Kirsch R (ed) Groundwater geophysics. Springer, Berlin

    Google Scholar 

  • Börner FD, Schön JH (1991) A relation between the quadrature component of electrical conductivity and the specific surface area of sedimentary rocks. Log Anal 32:612–613

    Google Scholar 

  • Börner FD, Schön JH (1995) Low frequency complex conductivity measurements of microcrack properties. Surveys in Geophysics 16:121–135

    Article  Google Scholar 

  • Börner FD, Schopper JR, Weller A (1996) Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys Prospect 44:583–601. doi:10.1111/j.1365-2478.1996.tb00167.x

    Article  Google Scholar 

  • Butler DB, Knight RJ (1998) Electrical conductivity of steam-flooded, clay-bearing geologic materials. Geophysics 63(4):1137–1149

    Article  Google Scholar 

  • Chandra S, Ahmed S, Ram A, Dewandel B (2008) Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J Hydrol 357(3–4):218–227. doi:10.1016/j.jhydrol.2008.05.023

    Article  Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluation formation constant and summarizing well field history. Am Geophys Union Trans 27:526–534

    Google Scholar 

  • Ekwe AC, Onu NN, Onuoha KM (2006) Estimation of aquifer hydraulic characteristics from electrical sounding data: the case of middle Imo River basin aquifers, south-eastern Nigeria. J Spatial Hydrol 6(2):121–132

    Google Scholar 

  • El-Sayed M, Abdel-Azim M, Mostafa M (1995) Evaluation of groundwater resources in Wadi El-Assuity area, east of Assuit city, Eastern Desert, Egypt. Water Resources at Risk Conference, American Institute of Hydrology, pp 42–56

  • Frohlich RK, Kelly WE (1985) The relation between hydraulic transmissivity and transverse resistance in a complicated aquifer of glacial outwash deposits. J Hydrol 79(3–4):215–229

    Article  Google Scholar 

  • Gerasimos AT (1985) A study of the hydrogeophysical properties of fissured aquifers using a double porosity model. J Hydrol 78:331–344, 0022-1694/85/$03.30

    Article  Google Scholar 

  • Gruhne M (1999) Überwachung von Untergrundkontaminationen met Messungen der komplexen elektriscen Leitfähigkeit. Proceedings des DGFZ16, Dresden

  • Heigold PC, Gilkeson RH, Cartwright K, Reed PC (1979) Aquifer transmissivity from surficial electrical methods. Ground Water 17(4):338–345

    Article  Google Scholar 

  • Kallergis G (1999) Applied-environmental hydrogeology. Technical Chamber of Greece, Athens, p 330

    Google Scholar 

  • Kelly WE (1977) Geoelectric sounding for estimating aquifer hydraulic conductivity. Ground Water 15(6):420–425

    Article  Google Scholar 

  • Khalil MA, Abd-Alla MA (2005) An approach to estimate hydraulic parameters and water quality from surface resistivity measurements at wadi El-Assuity area, Egypt. NRIAG J Geophys, Special issue, pp 267–281

  • Khalil MA, Santos FA (2009) Influence of degree of saturation in the electric resistivity–hydraulic conductivity relationship. Surv Geophys 30:601–615. doi:10.1007/s10712-009-9072-4

    Article  Google Scholar 

  • Krahl J, Kauffmann G, Kozur H, Richter D, Forster O, Heinritzi F (1983) Neue Daten zur Biostratigraphie und zur tektonischen Lagerung der Phyllit-Gruppe und der Trypali—Gruppe aufder Insel Kreta (Griechenland). Geol Rundsch 72:1147–1166

    Article  Google Scholar 

  • Kurniawan (2002) Evaluation of the hydrocarbon potential in low-salinity shaly sand. MSc thesis, Faculty of the Louisiana State University and Agricultural and Mechanical College, p 86

  • Lesmes DP, Frye KM (2001) Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone. J Geophys Res 106:4079–4090

    Article  Google Scholar 

  • Lockner DA, Byerlee JD (1985) Complex resistivity measurements of confined rock. J Geophys Res 90:7837–7847

    Article  Google Scholar 

  • Mazac O, Kelly W, Landa I (1985) A hydrogeophysical model for relations between electrical and hydraulic properties of aquifers. J Hydrogeol 79:1–19

    Article  Google Scholar 

  • Mbonu PC, Ebeniro JO, Ofoegbu CO, Ekine AS (1991) Geoelectric sounding for the determination of aquifer characteristics in parts of the Umuahia area of Nigeria. Geophys 56(2):284–291

    Article  Google Scholar 

  • Niwas S, Singhal DC (1981) Estimation of aquifer transmissivity from Dar Zarrouk parameters in porous media. J Hydrol (Amst) 50:393–399. doi:10.1016/0022-1694(81)90082-2

    Article  Google Scholar 

  • Niwas S, Singhal DC (1985) Aquifer transmissivity of porous media from resistivity data. J Hydrol (Amst) 82:143–153. doi:10.1016/0022-1694(85)90050-2

    Article  Google Scholar 

  • Pape H, Grinat M, Vogelsang D (1992) Logging of induced polarization in the KTB-Oberpfalz VB interpreted by a fractal model. Sci Drill 3:105–114

    Google Scholar 

  • Patnode HW, Wyllie MR (1950) the presence of condutive solids in reservoir rocks as a factor in electric log interpretation. J Pet Technol 189:47–52

    Google Scholar 

  • Pflannkuch HO (1969) On the correlation of electrical conductivity properties of porous system with viscous flow transport coefficients. Proceedings of the IAHR First International Symposium on Fundamentals of Transport Phenomena in Porous Media, Haifa, pp 42–54

  • Said R (1981) The geological evolution of the River Nile. Springer, New York, 151p

    Google Scholar 

  • Said R (1990) The geology of Egypt. Balkema, Rotterdam, 734 pp

    Google Scholar 

  • Scott JB (2006) The origin of the observed low-frequency electrical polarization in sandstones. Geophysics 71(5):G235–G238. doi:10.1190/1.2258092

    Article  Google Scholar 

  • Slater LD, Lesmes DP (2002) Electric–hydraulic relationships observed for unconsolidated sediments. Water Resour Res 8:-13

    Google Scholar 

  • Soupios P, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis basin in Chania (Crete-Greece). J Hydrol (Amst) 338:122–131. doi:10.1016/j.jhydrol.2007.02.028

    Article  Google Scholar 

  • Urish DW (1981) Electrical resistivity–hydraulic conductivity relationships in glacial outwash aquifers. Water Resour Res 17(5):1401–1408. doi:10.1029/WR017i005p01401

    Article  Google Scholar 

  • Vinegar H, Waxman J (1984) Induced polarization of shaly sands. Geophysics 49(8):1267–1287. doi:10.1190/1.1441755

    Article  Google Scholar 

  • Waxman MH, Smits LJM (1968) Electrical conductivities in oil bearing sands. Journal of the Society of Petroleum Engineering 8:107–122

    Google Scholar 

  • Worthington PF (1993) The uses and abuses of the Archie equations. 1. The formation factor–porosity relationship. J Appl Geophys 30:215–228. doi:10.1016/0926-9851(93)90028W

    Article  Google Scholar 

  • Worthington PF, Barker RD (1972) Methods for calculation of true formation factors in the Bunter sandstone of northwest England. Eng Geol 6:213–228

    Article  Google Scholar 

  • Yadav GS (1995) Relating hydraulic and geoelectric parameters of the Jayant aquifer, India. J Hydrol (Amst) 167:23–38. doi:10.1016/0022-1694(94)02637-Q

    Article  Google Scholar 

  • Yadav GS, Kumar R, Singh PN, Singh SC (1993) Geoelectrical soundings for aquifer characterization around Jayant colony-Singrauli, Sidhi District, MP. J Assoc Explor Geophys XIV(3):123–131

    Google Scholar 

Download references

Acknowledgment

The author is indebted to the Fundação para a Ciência e Tecnologia (Portugal) for the support through the post-doctor fellowship (SFRH\BPD\29971/2006). This work was partly developed in the scope of the scientific cooperation agreement between the Center of Geophysics, University of Lisboa (CGUL), and the National Research Institute of Astronomy and Geophysics, Cairo, Egypt (NRIAG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ahmed Khalil.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khalil, M.A. Real surface conductivity component as indicator for the hydraulic conductivity. Arab J Geosci 4, 269–281 (2011). https://doi.org/10.1007/s12517-010-0143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-010-0143-0

Keywords

  • Hydrogeophysics
  • Hydraulic conductivity
  • Electric resistivity
  • Surface conductance